A bimetallic cobalt-iron catalyst was utilized to demonstrate the growth of multiwalled carbon nanotubes (CNTs) at low gas pressure through thermal chemical vapor deposition. The characteristics of multiwalled CNTs were investigated based on the effects of catalyst thickness and gas pressure variation. The results revealed that the average diameter of nanotubes increased with increasing catalyst thickness, which can be correlated to the increase in particle size. The growth rate of the nanotubes also increased significantly by ~2.5 times with further increment of gas pressure from 0.5 Torr to 1.0 Torr. Rapid growth rate of nanotubes was observed at a catalyst thickness of 6 nm, but it decreased with the increase in catalyst thickness. The higher composition of 50% cobalt in the cobalt-iron catalyst showed improvement in the growth rate of nanotubes and the quality of nanotube structures compared with that of 20% cobalt. For the electrical properties, the measured sheet resistance decreased with the increase in the height of nanotubes because of higher growth rate. This behavior is likely due to the larger contact area of nanotubes, which improved electron hopping from one localized tube to another.
Tungsten trioxide (WO3) nanostructure with aspect ratio of 20 (length/diameter) have been successfully synthesized by single step hydrothermal reaction at moderate temperature of 180 °C. The crystal structure and morphology evolution are characterized by SEM and Raman while the carbon dioxide (CO2) sensing capability was tested by simple sensor fabrication .It was observed that the nanorods were initially coalesce in bundles before breaking up loosely towards the end of the hydrothermal process. A response measurement reveals that the sensor was able to detect CO2 at room temperature with the sensitivity around 13ohm/100 ppm. The detection performance of such nanostructure provides a positive indication that it can be a competitive sensor element candidate not only for CO2 applications in particular but can be expanded to other gas sensing application such as O2, C2H4 and NO2.
There are few known parameters which govern tungsten trioxide (WO3) hydrothermal synthesis process which includes material source concentration, synthesis temperature, duration, pH value and additive level. Using design of experiments (DOE) approach, a systematic experimental procedure was conducted to investigate the effect of each parameter to the final morphology of the synthesized nanostructure. Despite the response obtained from this study is in qulitative form, the analysis still can be done to identify the combination of variables that most likely can produce either 1-D, 2-D or 3-D nanostructure. This insight is essential before further optimization of the process can be done in order to predict the behavior of the WO3 hydrothermal synthesis process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.