We report the shape evolution process of Cu(2)O nanocrystals upon slow oxidation of Cu under ambient conditions, yielding novel hexagonal and triangular platelike morphologies. The shape of the obtained nanocrystals evolves from hexagonal to triangular to octahedral; the growth patterns are governed by kinetically and thermodynamically controlled growth. Preferential adsorption of I(-) on {111} planes of Cu(2)O nanoparticles induced the selective crystal growth of metastable platelike structures with {111} faces as the basal planes. On aging, the growth process appeared to shift into the thermodynamic regime and the thermodynamically stable octahedral shape is obtained. The possible growth mechanisms were investigated by varying the synthetic conditions. The band gap of Cu(2)O nanooctahedrons was determined by the classical Tauc approach to be 2.24 eV, which is blue shifted with respect to the bulk Cu(2)O value (2.17 eV). Results suggest that the slow oxidation process and use of crystallographic selective surfactants are essential for the appearance of anisotropic metastable shapes. In general, surface energy control by surfactant molecules might provide a convenient channel for tailoring nanocrystal shapes of metal oxides.
Infrared diode laser spectroscopy has been used as a diagnostic probe to measure the concentrations of the
methyl radical and stable products in an ac methane/hydrogen/oxygen (CH4−H2−O2) plasma. Among the
products detected were all of the stable C-2 hydrocarbons and oxygen-containing species including methanol,
formaldehyde, formic acid, carbon monoxide, and carbon dioxide. A simple one-dimensional chemical modeling
program has been written to calculate and compare the model concentrations of all the detected species with
their observed concentrations. Good agreement between these values has been obtained which enables some
insights to be gained into the gas-phase mechanism in mixed methane plasmas.
The manganese tricarbonyl complex fac-Mn(Br)(CO)3((i)Pr2Ph-DAB) (1) [(i)Pr2Ph-DAB = (N,N'-bis(2,6-di-isopropylphenyl)-1,4-diaza-1,3-butadiene)] was synthesized from the reaction of Mn(CO)5Br with the sterically encumbered DAB ligand. Compound 1 exhibits rapid CO release under low power visible light irradiation (560 nm) suggesting its possible use as a photoCORM. The reaction of compound 1 with TlPF6 in the dark afforded the manganese(I) tetracarbonyl complex, [Mn(CO)4((i)Pr2Ph-DAB)][PF6] (2). While 2 is comparatively more stable than 1 in light, it demonstrates high thermal reactivity such that dissolution in CH3CN or THF at room temperature results in rapid CO loss and formation of the respective solvate complexes. This unusual reactivity is due to the large steric profile of the DAB ligand which results in a weak Mn-CO binding interaction.
Two stable and water-soluble organometallic carbonyl cluster derivatives have been prepared and shown to enter the cell with ease. The CO stretching vibrations afford strong mid-infrared signals which have been demonstrated, for the first time, to be of utility in cell imaging via an IR microscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.