When it comes to predicting experimental values of molecular properties with deep learning, the key problem is the lack of sufficient experimental data for training. We propose a method that consists of pretraining a graph neural network that aims to reproduce first-principles quantum mechanical results, followed by fine-tuning of a fully connected neural network against experimental results. The combined pretraining and fine-tuning model is expected to yield molecular properties close to experimental accuracy. This is made possible because first-principles quantum mechanical methods are often qualitatively correct or semiquantitatively accurate; thus, a calibration of the calculation results against high-precision but limited experiment data can improve accuracy greatly. Moreover, the method is highly efficient, as first-principles quantum mechanical calculation is bypassed. To demonstrate this, we apply the combined model to determine the experimental heats of formation of organic molecules made of H, C, O, N, or F atoms (up to 30 atoms), where mere 405 experimental data are used. The overall mean absolute error is 1.8 kcal/mol for these molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.