The hematological malignancies (HM) are group of neoplasms that arise through malignant transformation of bone marrow derived cells. The great diversity seen in this group of disorders is a reflection of the complexity of normal hematopoiesis and the immune system. In the current study, the author retrospectively studied HM patients from 2008 to 2010, and compared with prevalence of solid tumor, and found HM represented one-fifth of all malignancies managed in the Oncology Unit, and lymphomas were the commonest HM.
B-cell lymphomas exhibit a vast variety of clinical and histological characteristics that might complicate the diagnosis. Timely diagnosis is crucial, as treatments for aggressive subtypes are considered successful and frequently curative, whereas indolent B-cell lymphomas are incurable and often need several therapies. The purpose of this review is to explore the current advancements achieved in B-cell lymphomas metabolism and how these indicators help to early detect metabolic changes in B-cell lymphomas and the use of predictive biological markers in refractory or relapsed disease. Since the year 1920, the Warburg effect has been known as an integral part of metabolic reprogramming. Compared to normal cells, cancerous cells require more glucose. These cancer cells undergo aerobic glycolysis instead of oxidative phosphorylation to metabolize glucose and form lactate as an end product. With the help of these metabolic alterations, a novel biomass is generated by the formation of various precursors. An aggressive metabolic phenotype is an aerobic glycolysis that has the advantage of producing high-rate ATP and preparing the biomass for the amino acid, as well as fatty acid, synthesis needed for a rapid proliferation of cells, while aerobic glycolysis is commonly thought to be the dominant metabolism in cancer cells. Later on, many metabolic biomarkers, such as increased levels of lactate dehydrogenase (LDH), plasma lactate, and deficiency of thiamine in B-cell lymphoma patients, were discovered. Various kinds of molecules can be used as biomarkers, such as genes, proteins, or hormones, because they all refer to body health. Here, we focus only on significant metabolic biomarkers in B-cell lymphomas. In conclusion, many metabolic biomarkers have been shown to have clinical validity, but many others have not been subjected to extensive testing to demonstrate their clinical usefulness in B-cell lymphoma. Furthermore, they play an essential role in the discovery of new therapeutic targets.
A wide range of histological as well as clinical properties are exhibited by B-cell non-Hodgkin’s lymphomas. These properties could make the diagnostics process complicated. The diagnosis of lymphomas at an initial stage is essential because early remedial actions taken against destructive subtypes are commonly deliberated as successful and restorative. Therefore, better protective action is needed to improve the condition of those patients who are extensively affected by cancer when diagnosed for the first time. The development of new and efficient methods for early detection of cancer has become crucial nowadays. Biomarkers are urgently needed for diagnosing B-cell non-Hodgkin’s lymphoma and assessing the severity of the disease and its prognosis. New possibilities are now open for diagnosing cancer with the help of metabolomics. The study of all the metabolites synthesised in the human body is called “metabolomics.” A patient’s phenotype is directly linked with metabolomics, which can help in providing some clinically beneficial biomarkers and is applied in the diagnostics of B-cell non-Hodgkin’s lymphoma. In cancer research, it can analyse the cancerous metabolome to identify the metabolic biomarkers. This review provides an understanding of B-cell non-Hodgkin’s lymphoma metabolism and its applications in medical diagnostics. A description of the workflow based on metabolomics is also provided, along with the benefits and drawbacks of various techniques. The use of predictive metabolic biomarkers for the diagnosis and prognosis of B-cell non-Hodgkin’s lymphoma is also explored. Thus, we can say that abnormalities related to metabolic processes can occur in a vast range of B-cell non-Hodgkin’s lymphomas. The metabolic biomarkers could only be discovered and identified as innovative therapeutic objects if we explored and researched them. In the near future, the innovations involving metabolomics could prove fruitful for predicting outcomes and bringing out novel remedial approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.