We propose and demonstrate an all-optical phase noise reduction scheme that uses optical nonlinear mixing and tunable optical delays to suppress the low-speed phase noise induced by laser linewidth. By utilizing the phase conjugate copy of the original signal and two narrow-linewidth optical pumps, the phase noise induced by laser linewidth can be reduced by a factor of ∼5 for a laser with 500-MHz phase noise bandwidth. The error-vector-magnitude can be improved from ∼30% to ∼14% for the same laser linewidth for 40-Gbit/s quadrature phase shift keying signal.
We demonstrated a delay-line interferometer (DLI)-based, optical-signal-to-noise ratio (OSNR) monitoring scheme of 100 Gbit/s polarization multiplexed quadrature-phase-shift-keying (PM-QPSK) four-channel WDM at 50-GHz International Telecommunication Union (ITU) grid with <0.5 dB error for signals with up to 26 dB of actual OSNR. We also demonstrated data format transparency and baud rate tunability of the OSNR monitor by measuring the OSNR for a 200 Gbit/s PM-16-QAM (25-Gbaud) signal and a 200 Gbit/s PM-QPSK (50-Gbaud) signal. We also explored and studied different monitor parameters, including the shape of the filter spectrum, the bandwidth of the filter, DLI delay, and DLI phase-detuning to determine the design guidelines for a desired level of accuracy for the OSNR monitor in an optical network.
We experimentally studied the performance of a delay-line interferometer-based optical signal-to-noise ratio (OSNR) monitor that is pre-calibrated in optimal conditions for 25-Gbaud pol-muxed quadrature-amplitude-modulation (QAM) signals, when unpredicted changes outside the monitor occurred either in the transmitter or the link.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.