Large enterprises are increasingly relying on threat detection softwares (e.g., Intrusion Detection Systems) to allow them to spot suspicious activities. These softwares generate alerts which must be investigated by cyber analysts to figure out if they are true attacks. Unfortunately, in practice, there are more alerts than cyber analysts can properly investigate. This leads to a "threat alert fatigue" or information overload problem where cyber analysts miss true attack alerts in the noise of false alarms.
Abstract-As the Internet of Things (IoT) continues to proliferate, diagnosing incorrect behavior within increasinglyautomated homes becomes considerably more difficult. Devices and apps may be chained together in long sequences of triggeraction rules to the point that from an observable symptom (e.g., an unlocked door) it may be impossible to identify the distantly removed root cause (e.g., a malicious app). This is because, at present, IoT audit logs are siloed on individual devices, and hence cannot be used to reconstruct the causal relationships of complex workflows. In this work, we present ProvThings, a platform-centric approach to centralized auditing in the Internet of Things. ProvThings performs efficient automated instrumentation of IoT apps and device APIs in order to generate data provenance that provides a holistic explanation of system activities, including malicious behaviors. We prototype ProvThings for the Samsung SmartThings platform, and benchmark the efficacy of our approach against a corpus of 26 IoT attacks. Through the introduction of a selective code instrumentation optimization, we demonstrate in evaluation that ProvThings imposes just 5% overhead on physical IoT devices while enabling real time querying of system behaviors, and further consider how ProvThings can be leveraged to meet the needs of a variety of stakeholders in the IoT ecosystem.
To subvert recent advances in perimeter and host security, the attacker community has developed and employed various attack vectors to make a malware much stealthier than before to penetrate the target system and prolong its presence. Such advanced malware or "stealthy malware" makes use of various techniques to impersonate or abuse benign applications and legitimate system tools to minimize its footprints in the target system. It is thus difficult for traditional detection tools, such as malware scanners, to detect it, as the malware normally does not expose its malicious payload in a file and hides its malicious behaviors among the benign behaviors of the processes. In this paper, we present PROVDETECTOR, a provenancebased approach for detecting stealthy malware. Our insight behind the PROVDETECTOR approach is that although a stealthy malware attempts to blend into benign processes, its malicious behaviors inevitably interact with the underlying operating system (OS), which will be exposed to and captured by provenance monitoring. Based on this intuition, PROVDETECTOR first employs a novel selection algorithm to identify possibly malicious parts in the OS-level provenance data of a process. It then applies a neural embedding and machine learning pipeline to automatically detect any behavior that deviates significantly from normal behaviors. We evaluate our approach on a large provenance dataset from an enterprise network and demonstrate that it achieves very high detection performance of stealthy malware (an average F1 score of 0.974). Further, we conduct thorough interpretability studies to understand the internals of the learned machine learning models.
Endpoint Detection and Response (EDR) tools provide visibility into sophisticated intrusions by matching system events against known adversarial behaviors. However, current solutions suffer from three challenges: 1) EDR tools generate a high volume of false alarms, creating backlogs of investigation tasks for analysts; 2) determining the veracity of these threat alerts requires tedious manual labor due to the overwhelming amount of low-level system logs, creating a "needle-in-a-haystack" problem; and 3) due to the tremendous resource burden of log retention, in practice the system logs describing long-lived attack campaigns are often deleted before an investigation is ever initiated.This paper describes an effort to bring the benefits of data provenance to commercial EDR tools. We introduce the notion of Tactical Provenance Graphs (TPGs) that, rather than encoding low-level system event dependencies, reason about causal dependencies between EDR-generated threat alerts. TPGs provide compact visualization of multi-stage attacks to analysts, accelerating investigation. To address EDR's false alarm problem, we introduce a threat scoring methodology that assesses risk based on the temporal ordering between individual threat alerts present in the TPG. In contrast to the retention of unwieldy system logs, we maintain a minimally-sufficient skeleton graph that can provide linkability between existing and future threat alerts. We evaluate our system, RapSheet, using the Symantec EDR tool in an enterprise environment. Results show that our approach can rank truly malicious TPGs higher than false alarm TPGs. Moreover, our skeleton graph reduces the longterm burden of log retention by up to 87%.1 A phenomenon in which cyber analysts do not respond, or respond inadequately, to threat alerts because they receive so many each day.
Recent advances in causality analysis have enabled investigators to trace multi-stage attacks using provenance graphs. Based on system-layer audit logs (e.g., syscalls), these approaches omit vital sources of application context (e.g., email addresses, HTTP response codes) that can be found in higher layers of the system. Although such information is often essential to understanding attack behaviors, it is difficult to incorporate this evidence into causal analysis engines because of the semantic gap that exists between system layers. To address that shortcoming, we propose the notion of universal provenance, which encodes all forensically relevant causal dependencies regardless of their layer of origin. To transparently realize that vision on commodity systems, we present OmegaLog, a provenance tracker that bridges the semantic gap between system and application logging contexts. OmegaLog analyzes program binaries to identify and model application-layer logging behaviors, enabling accurate reconciliation of application events with system-layer accesses. OmegaLog then intercepts applications' runtime logging activities and grafts those events onto the system-layer provenance graph, allowing investigators to reason more precisely about the nature of attacks. We demonstrate that our system is widely applicable to existing software projects and can transparently facilitate execution partitioning of provenance graphs without any training or developer intervention. Evaluation on real-world attack scenarios shows that our technique generates concise provenance graphs with rich semantic information relative to the state-of-the-art, with an average runtime overhead of 4%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.