Chromatin reorganization is governed by multiple post-translational modifications of chromosomal proteins and DNA. These histone modifications are reversible, dynamic events that can regulate DNA-driven cellular processes. However, the molecular mechanisms that coordinate histone modification patterns remain largely unknown. In metazoans, reversible protein modification by O-linked N-acetylglucosamine (GlcNAc) is catalysed by two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). However, the significance of GlcNAcylation in chromatin reorganization remains elusive. Here we report that histone H2B is GlcNAcylated at residue S112 by OGT in vitro and in living cells. Histone GlcNAcylation fluctuated in response to extracellular glucose through the hexosamine biosynthesis pathway (HBP). H2B S112 GlcNAcylation promotes K120 monoubiquitination, in which the GlcNAc moiety can serve as an anchor for a histone H2B ubiquitin ligase. H2B S112 GlcNAc was localized to euchromatic areas on fly polytene chromosomes. In a genome-wide analysis, H2B S112 GlcNAcylation sites were observed widely distributed over chromosomes including transcribed gene loci, with some sites co-localizing with H2B K120 monoubiquitination. These findings suggest that H2B S112 GlcNAcylation is a histone modification that facilitates H2BK120 monoubiquitination, presumably for transcriptional activation.
The post-translational modifications of histone tails generate a 'histone code' that defines local and global chromatin states. The resultant regulation of gene function is thought to govern cell fate, proliferation and differentiation. Reversible histone modifications such as methylation are under mutual controls to organize chromosomal events. Among the histone modifications, methylation of specific lysine and arginine residues seems to be critical for chromatin configuration and control of gene expression. Methylation of histone H3 lysine 4 (H3K4) changes chromatin into a transcriptionally active state. Reversible modification of proteins by beta-N-acetylglucosamine (O-GlcNAc) in response to serum glucose levels regulates diverse cellular processes. However, the epigenetic impact of protein GlcNAcylation is unknown. Here we report that nuclear GlcNAcylation of a histone lysine methyltransferase (HKMT), MLL5, by O-GlcNAc transferase facilitates retinoic-acid-induced granulopoiesis in human HL60 promyelocytes through methylation of H3K4. MLL5 is biochemically identified in a GlcNAcylation-dependent multi-subunit complex associating with nuclear retinoic acid receptor RARalpha (also known as RARA), serving as a mono- and di-methyl transferase to H3K4. GlcNAcylation at Thr 440 in the MLL5 SET domain evokes its H3K4 HKMT activity and co-activates RARalpha in target gene promoters. Increased nuclear GlcNAcylation by means of O-GlcNAc transferase potentiates retinoic-acid-induced HL60 granulopoiesis and restores the retinoic acid response in the retinoic-acid-resistant HL60-R2 cell line. Thus, nuclear MLL5 GlcNAcylation triggers cell lineage determination of HL60 through activation of its HKMT activity.
The methylation states of histone lysine residues are regarded as significant epigenetic marks governing transcriptional regulation. A number of histone demethylases containing a jumonji C (JmjC) domain have been recognized; however, their properties remain to be investigated. Here, we show that KIAA1718, a PHF2/PHF8 subfamily member, possesses histone demethylase activity specific for H3K9 and H3K27, transcriptionally repressive histone marks. Biochemical purification of the KIAA1718 interactants reveals that KIAA1718 forms complexes with several factors including KAP1, a transcriptional co-activator. Consistent with these findings, KIAA1718 shows a transcriptional activation function in the chromatin context. Thus, our study identifies KIAA1718 as a histone demethylase for repressive methyl marks and shows that it is involved in transcriptional activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.