The adenovirus (Ad) genome encodes one or two non-coding small RNAs called virus-associated (VA)-RNAs, that are transcribed by polymerase III and support Ad replication. As previously reported, a replication-incompetent Ad vector, which is widely used in not only gene therapy studies, including clinical trials, but also basic researches as a gene delivery vehicle, as well as wild-type Ad (WT-Ad) express VA-RNAs, and VA-RNAs activate innate immunity, including the production of type I interferons. In addition, VA-RNAs perturb cellular microRNA (miRNA) expression profiles via competitive inhibition of key components involved in the miRNA maturation pathway. Although these characteristics of VA-RNAs might negatively affect the application of Ad vectors, VA-RNA expression profiles following transduction with an Ad vector have been not fully examined. In this study, we quantitatively analyzed the expression profiles of VA-RNAI, which is a major species of VA-RNAs, following transduction with Ad vectors in vitro and in vivo using real-time RT-PCR. The VA-RNAI expression levels in the cells transduced with a conventional Ad vector expressing luciferase (Ad-CAL2) at a multiplicity of infection (MOI) of 100 were approximately 2000-to 3000-fold lower than those infected with WT-Ad at the same MOI at 48 h after treatment. The expression levels of VA-RNAI in the mouse liver following administration with Ad-CAL2 were approximately 600-fold lower than those following administration with WT-Ad at 48 h post-administration. miRNA-mediated suppression of leaky expression of the Ad E4 genes resulted in about five-fold reduction in the VA-RNAI copy numbers in the liver following systemic administration in mice. These data provide informative clues for the development of novel safer Ad vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.