Protein aggregation is a pathological hallmark of and may play a central role in the neurotoxicity in age-associated neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. Accordingly, inhibiting aggregation of amyloidogenic proteins, including amyloid β and α-synuclein, has been a main therapeutic target for these disorders. Among various strategies, amyloid β immunotherapy has been extensively investigated in Alzheimer’s disease, followed by similar studies of α-synuclein in Parkinson’s disease. Notably, a recent study of solanezumab, an amyloid β monoclonal antibody, raises hope for the further therapeutic potential of immunotherapy, not only in Alzheimer’s disease, but also for other neurodegenerative disorders, including Parkinson’s disease. Thus, it is expected that further refinement of immunotherapy against neurodegenerative diseases may lead to increasing efficacy. Meanwhile, type II diabetes mellitus has been associated with an increased risk of neurodegenerative disease, such as Alzheimer’s disease and Parkinson’s disease, and studies have shown that metabolic dysfunction and abnormalities surrounding insulin signaling may underlie disease progression. Naturally, “anti-insulin resistance” therapy has emerged as a novel paradigm in the therapy of neurodegenerative diseases. Indeed, incretin agonists, which stimulate pancreatic insulin secretion, reduce dopaminergic neuronal loss and suppress Parkinson’s disease disease progression in clinical trials. Similar studies are ongoing also in Alzheimer’s disease. This paper focuses on critical issues in “immunotherapy” and “anti-insulin resistance” therapy in relation to therapeutic strategies against neurodegenerative disease, and more importantly, how they might merge mechanistically at the point of suppression of protein aggregation, raising the possibility that combined immunotherapy and “anti-insulin resistance” therapy may be superior to either monotherapy.
All living organisms have evolutionarily adapted themselves to the Earth’s gravity, and failure to adapt to gravity changes may lead to pathological conditions. This perspective may also apply to abnormal aging observed in bedridden elderly patients with aging-associated diseases such as osteoporosis and sarcopenia. Given that bedridden elderly patients are partially analogous to astronauts in that both cannot experience the beneficial effects of gravity on the skeletal system and may suffer from bone loss and muscle weakness, one may wonder whether there are gravity-related mechanisms underlying diseases among the elderly. In contrast to numerous studies of the relevance of microgravity in skeletal disorders, little attention has been paid to neurodegenerative diseases. Therefore, the objective of this paper is to discuss the possible relevance of microgravity in these diseases. We particularly noted a proteomics paper showing that levels of hippocampal proteins, including β-synuclein and carboxyl-terminal ubiquitin hydrolase L1, which have been linked to familial neurodegenerative diseases, were significantly decreased in the hippocampus of mice subjected to hindlimb suspension, a model of microgravity. We suggest that microgravity-induced neurodegeneration may be further exacerbated by diabetes and other factors. On the basis of this view, prevention of neurodegenerative diseases through ‘anti-diabetes’ and ‘hypergravity’ approaches may be important as a common therapeutic approach on Earth and in space. Collectively, neurodegenerative diseases and space medicine may be linked to each other more strongly than previously thought.
Recent clinical trials using immunization approaches against Alzheimer's disease (AD) have failed to demonstrate improved cognitive functions in patients, despite potent suppression in the formation of both senile plaques and other amyloid-β deposits in postmortem brains. Similarly, we observed that treatment with ibuprofen, a non-steroidal anti-inflammatory drug, was effective in improving the histopathology, such as reducing both protein aggregation and glial activation, in the brains of transgenic mice expressing dementia with Lewy bodies-linked P123H β-synuclein. In contrast, only a small improvement in cognitive functions was observed in these mice. Collectively, it is predicted that histology does not correlate with behavior that is resilient and resistant to therapeutic stimuli. Notably, such a 'discrepancy between histology and behavior' is reminiscent of AD-like pathologies and incidental Lewy bodies, which are frequently encountered in postmortem brains of the elderly who had been asymptomatic for memory loss and Parkinsonism during their lives. We suggest that 'the discrepancy between histology and behavior' may be a universal feature that is associated with various aspects of neurodegenerative diseases. Furthermore, given that the cognitive reserve is specifically observed in human brains, human behavior may be evolutionally distinct from that in other animals, thus, contributing to the differential efficiency of therapy between human and lower animals, an important issue in the therapy of neurodegenerative diseases. Overall, it is important to better understand 'the discrepancy between histology and behavior' in the mechanism of neurodegeneration for the development of effective therapies against neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.