In this study, an NaA-type zeolite membrane was prepared, and the dehydration performances of the membrane were determined by the pervaporation for several organic solvents to understand the lower dehydration performances of zeolite membranes for NMP solutions than those for alcohols. For a 90 wt% ethanol solution at 348 K, the permeation flux and separation factor of the membrane were 3.82 kg m−2 h−1 and 73,800, respectively. The high dehydration performances were also obtained for alcohols and low boiling solvents (acetonitrile, acetone, methyl ethyl ketone (MEK) and tetrahydrofuran (THF)). However, the permeation flux and separation factors decreased significantly for high boiling solvents, such as N,N-dimethylacetamide (DMA), N,N-dimethyl formamide (DMF), dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP). The influences of the water content and temperature on the dehydration performances for the NMP solutions were determined to understand the lower dehydration performances for those solvents. Those results suggest that the lower dehydration performances for the high boiling solvents were attributed to the lower vapor pressures of water and the higher permeances of those solvents. Furthermore, this study proposes that the permeation behaviors through zeolite membranes could be understood by the determination of the effect of temperature on the permeance of individual components.
The separation of non-aqueous mixtures is important for chemical production, and zeolite membranes have great potential for energy-efficient separation. In this study, the influence of the framework structure and composition of zeolites on the permeation and separation performance of methanol through zeolite membranes were investigated to develop a methanol permselective zeolite membrane. As a result, the FAU-type zeolite membrane prepared using a solution with a composition of 10 SiO2:1 Al2O3:17 Na2O:1000 H2O showed the highest permeation flux of 86,600 μmol m−2 s−1 and a separation factor of 6020 for a 10 wt% methanol/methyl hexanoate mixture at 353 K. The membrane showed a molecular sieving effect, reducing the single permeation flux of alcohol with molecular size for single-component alcohols. Moreover, the permeation flux of methanol and the separation factor increased with an increase in the carbon number of the alcohols and methyl esters containing 10 wt% methanol. In this study, the permeation behavior of FAU-type zeolite membranes was also discussed based on permeation data. These results suggest that the FAU-type zeolite membrane has the potential to separate organic solvent mixtures, such as solvent recycling and membrane reactors.
The transesterification conversion of methyl ether can be enhanced by the removal of the byproduct methanol using methanol permselective faujasite (FAU-type) zeolite membranes. However, the authors previously observed that the methanol flux during the transesterification reaction was lower than the predicted flux. Therefore, this study investigated the stability of FAU-type zeolite membranes in the presence of organic components associated with the transesterification reaction of methyl hexanoate and 1-hexanol. The stability was defined in terms of changes in methanol permeance and zeolite structure. The effect of reaction components (methanol, 1-hexanol, methyl hexanoate, and hexyl hexanoate) on the FAU-type zeolite structure and the methanol permeation performance of the FAU-type zeolite membranes were evaluated to find the component causing the lower methanol flux. From these results, two esters were found to adsorb strongly on the FAU-type zeolite. The methanol flux of the FAU-type zeolite membrane was examined after vapor exposure of each of the four reaction chemicals at 373 K for 8 h. In the case of methyl hexanoate and hexyl hexanoate vapor exposure, the methanol flux was reduced by about 75% compared to the initial flux of 15 kg m−2 h−1. These results indicated methanol permeation performance was inhibited by the adsorption of esters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.