Understanding the trajectories and extents of land use/land cover change (LULCC) is important to generate and provide helpful information to policymakers and development practitioners about the magnitude and trends of LULCC. This study presents the contributing factors of LULCC, the extent and implications of these changes for sustainable land use in the Finchaa catchment. Data from Landsat images 1987, 2002, and 2017 were used to develop the land use maps and quantify the changes. A supervised classification with the maximum likelihood classifier was used to classify the images. Key informant interviews and focused group discussions with transect walks were used for the socio-economic survey. Over the past three decades, agricultural land, commercial farm, built-up, and water bodies have increased while forestland, rangeland, grazing land, and swampy areas have decreased. Intensive agriculture without proper management practice has been a common problem of the catchment. Increased cultivation of steep slopes has increased the risk of erosion and sedimentation of nearby water bodies. Multiple factors, such as biophysical, socio-economic, institutional, technological, and demographic, contributed to the observed LULCC in the study area. A decline in agricultural yield, loss of biodiversity, extended aridity and drought, land and soil degradation, and decline of water resources are the major consequences of LULCC in the Finchaa catchment. The socio-economic developments and population growth have amplified the prolonged discrepancy between supply and demand for land and water in the catchment. More comprehensive and integrated watershed management policies will be indispensable to manage the risks.
Land use/land cover (LULC) and climate change affect the availability of water resources by altering the magnitude of surface runoff, aquifer recharge, and river flows. The evaluation helps to identify the level of water resources exposure to the changes that could help to plan for potential adaptive capacity. In this research, Cellular Automata (CA)-Markov in IDRISI software was used to predict the future LULC scenarios and the ensemble mean of four regional climate models (RCMs) in the coordinated regional climate downscaling experiment (CORDEX)-Africa was used for the future climate scenarios. Distribution mapping was used to bias correct the RCMs outputs, with respect to the observed precipitation and temperature. Then, the Soil and Water Assessment Tool (SWAT) model was used to evaluate the watershed hydrological responses of the catchment under separate, and combined, LULC and climate change. The result shows the ensemble mean of the four RCMs reported precipitation decline and increase in future temperature under both representative concentration pathways (RCP4.5 and RCP8.5). The increases in both maximum and minimum temperatures are higher for higher emission scenarios showing that RCP8.5 projection is warmer than RCP4.5. The changes in LULC brings an increase in surface runoff and water yield and a decline in groundwater, while the projected climate change shows a decrease in surface runoff, groundwater and water yield. The combined study of LULC and climate change shows that the effect of the combined scenario is similar to that of climate change only scenario. The overall decline of annual flow is due to the decline in the seasonal flows under combined scenarios. This could bring the reduced availability of water for crop production, which will be a chronic issue of subsistence agriculture. The possibility of surface water and groundwater reduction could also affect the availability of water resources in the catchment and further aggravate water stress in the downstream. The highly rising demands of water, owing to socio-economic progress, population growth and high demand for irrigation water downstream, in addition to the variability temperature and evaporation demands, amplify prolonged water scarcity. Consequently, strong land-use planning and climate-resilient water management policies will be indispensable to manage the risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.