Background Coronavirus related respiratory illness usually manifests clinically as pneumonia with predominant imaging findings of an atypical or organizing pneumonia. Plain radiography is very helpful for COVID-19 disease assessment and follow-up. It gives an accurate insight into the disease course. We aimed to determine the COVID-19 disease course and severity using chest X-ray (CXR) scoring system and correlate these with patients’ age, sex, and outcome. Results In our study, there were 350 patients proven with positive COVID-19 disease; 220 patients (62.9%) had abnormal baseline CXR and 130 patients (37.1%) had normal baseline CXR. During follow-up chest X-ray studies, 48 patients (13.7%) of the normal baseline CXR showed CXR abnormalities. In abnormal chest X-ray, consolidation opacities were the most common finding seen in 218 patients (81.3%), followed by reticular interstitial thickening seen in 107 patients (39.9%) and GGO seen in 87 patients (32.5%). Pulmonary nodules were found 25 patients (9.3%) and pleural effusion was seen in 20 patients (7.5%). Most of the patients showed bilateral lung affection (181 patients, 67.5%) with peripheral distribution (156 patients, 58.2%) and lower zone affection (196 patients, 73.1%). The total severity score was estimated in the baseline and follow-up CXR and it was ranged from 0 to 8. The outcome of COVID-19 disease was significantly related to the age, sex, and TSS of the patients. Male patients showed significantly higher mortality rate as compared to the female patients (P value 0.025). Also, the mortality rate was higher in patients older than 40 years especially with higher TSS. Conclusion Radiographic findings are very good predictors for assessing the course of COVID-19 disease and it could be used as long-term consequences monitoring.
Background Since the beginning of 2020, coronavirus disease has spread widely all over the world and this required rapid adequate management; therefore, continuous searching for rapid and sensitive CT chest techniques was needed to give a hand for the clinician. We aimed to assess the validity of computed tomography (CT) quantitative and qualitative analysis in COVID-19 pneumonia and how it can predict the disease severity on admission. Results One hundred and twenty patients were enrolled in our study, 98 (81.7%) of them were males, and 22 (18.3%) of them were females with a mean age of 52.63 ± 12.79 years old, ranging from 28 to 83 years. Groups B and C showed significantly increased number of involved lung segments and lobes, frequencies of consolidation, crazy-paving pattern, and air bronchogram. The total lung severity score and the total score for crazy-paving and consolidation are used as severity indicators in the qualitative method and could differentiate between groups B and C and group A (90.9% sensitivity, 87.5% specificity, and 93.2% sensitivity, 87.5% specificity, respectively), while the quantitative indicators could differentiate these three groups. Using the quantitative CT indicators, the validity to differentiate different groups showed 84.1% sensitivity and 81.2% specificity for the opacity score, and 90.9% sensitivity and 81.2% specificity for the percentage of high opacity. Conclusion Advances in CT COVID-19 pneumonia assessment provide an accurate and rapid tool for severity assessment, helping for decision-making notably for the critical cases.
Aim This study aimed to evaluate potential dose savings on a revised protocol for whole-body computed tomography and image quality after implementing Adaptive Statistical Iterative Reconstruction V (ASiR-V) algorism for trauma patients and compare it with routine protocol. Materials and Methods One hundred trauma patients were classified into 2 groups using 2 different scanning protocols. Group A (n = 50; age, 32.48 ± 8.09 years) underwent routine 3-phase protocol. Group B (n = 50; age, 35.94 ± 13.57 years) underwent biphasic injection protocol including unenhanced scan for the brain and cervical spines, followed by a 1-step acquisition of the thorax, abdomen, and pelvis. The ASiR-V level was kept at 50% for all examinations, and then studies were reconstructed at 0% ASiR-V level. Radiation dose, total acquisition time, and image count were compared between groups (A and B). Two radiologists independently graded image quality and artifacts between both groups and 2 ASiR-V levels (0 and 50%). Results The mean (±SD) dose-length product value for postcontrast scans in group A was 1602.3 ± 271.8 mGy · cm and higher when compared with group B (P < 0.001), which was 951.1 ± 359.6 mGy · cm. Biphasic injection protocol gave a dose reduction of 40.4% and reduced the total acquisition time by 11.4% and image count by 37.6%. There was no statistically significant difference between the image quality scores for both groups; however, group A scored higher grades (4.62 ± 0.56 and 4.56 ± 0.67). Similarly, the image quality scores for both ASiR-V levels in both groups were not significantly different. Conclusions Biphasic computed tomography protocol reduced radiation dose with maintenance of diagnostic accuracy and image quality after implementing ASiR-V algorism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.