A bio-based fibrous film intended to be used as a food-packaging component was electrospun from blend solutions of cellulose acetate (CA) in neat acetic acid and poly(ethylene oxide) (PEO) in 90% ethanol. The CA/PEO blend ratios were varied to determine the effects of PEO on the morphology, moisture-adsorption and tensile properties of the blended fibrous films. Zinc oxide nanoparticles (ZnO NPs) incorporated (2-20 wt% of PEO) into the blended fibers were tested for their effect on tensile and thermal properties of the nanocomposite films. The results indicated that the addition of PEO at 9 wt% improved tensile strength, elongation and elasticity (Po0.05) of the CA-based fibrous films. The energy-dispersive spectrometer-scanning electron microscopy results suggested that zinc elements were well dispersed in the CA-PEO-blend fiber matrix. The addition of ZnO NPs at 20 wt% of PEO led to a significant improvement in the elongation and tensile strength of the CA-PEO-blend fibrous film (Po0.05). This improvement was attributed to the association between ZnO NPs and the semi-crystalline structures of the PEO, as evidenced by differential scanning calorimetry thermograms and X-ray diffraction spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.