We present the latest progress on the industrial scale coating facility for the Advanced Telescope for High-ENergy Astrophysics (ATHENA) mission. The facility has been successfully commissioned and tested, completing an important milestone in preparation of the Silicon Pore Optics (SPO) production capability. We qualified the coating facility by depositing iridium and boron carbide thin films in different configurations under various process conditions including pre-coating in-system plasma cleaning. The thin films were characterized with X-Ray Reflectometry (XRR) using laboratory X-ray sources Cu K-α at 8.048 keV and PTB's four-crystal monochromator beamline at the synchrotron radiation facility BESSY II in the energy range from 3.6 keV to 10.0 keV. Additional X-ray Photoelectron Spectroscopy (XPS) measurements were performed with Al K-α radiation to analyze the composition of the deposited thin films.
The thin film coating technology for the European Space Agency mission, Advanced Telescope for High-Energy Astrophysics (Athena) has been established. The X-ray optics of the Athena telescope is based on Silicon Pore Optics (SPO) technology which is enhanced by the thin film coatings deposited on the reflective surface of the SPO plates.In this work, we present a literature study of the coating process parameter space and provide an overview of the thin film properties with a focus on micro roughness, chemical composition and wear resistance when deposited under various process conditions. We determined, that the thin film density depends strongly on the mobility of the adatoms on the substrate surface. Some coating process parameters, which have a significant impact on the adatom mobility are the discharge voltage, the working gas pressure and the substrate temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.