The growing interest in the negative environmental impact of overhead power lines of high and extra-high voltage stems from the increasing ecological awareness of societies. Consequently, a number of respective legal restrictions have been issued and actions have been undertaken to reduce this impact, especially in the electric field of the power frequency. The aim of this paper is to analyze the possibilities of reducing the width of electric field influence zones by changing the design parameters of power lines and defining the spatial distribution of its conductors. This analysis was carried out using the developed and experimentally verified models for determining the electric field and audible noise in the power line environment. The computational models were used to analyze the width of the electric field influence zones of 400 kV lines and the noise levels at the borders of these zones. The research focused on single and double circuit 400 kV power lines. It was revealed that a reduction in electric field emissions is accompanied by an increase in noise emission. However, the analyses confirmed that the width of the electric field influence zones can be significantly reduced if the most important design and construction parameters of the line are properly selected. The obtained conclusions are valid not only for 400 kV lines, but also set directions to follow when changing the parameters of high voltage transmission lines of other rated voltages (above 100 kV).
In this paper, the effectiveness of lightning overvoltage protection of cables in high voltage overhead cable lines has been analyzed. Because of the high overvoltage level, the cables are protected by surge arresters and by metallic sheath earthing. However, in practice, quite a lot of cases of electricity-evoked damage to the cable outer sheaths are observed, proving that the effectiveness of the protection used is insufficient. As a result, the cables are exposed to environmental factors, especially moisture penetration, which contributes to cable degradation. To explain the causes of this situation, simulation studies were carried out to determine the relevant factors affecting the level of expected overvoltages. The circuit-field model of the overhead cable line in EMTP-ATP, COMSOL and MATLAB software was used for determining overvoltages on the main cable insulation and the outer protective sheath. The studies reveal that the efficiency of the cable insulation overvoltage protection is ensured regardless of the lightning strike location and the crest value of its current. However, the obtained results confirm that no matter the applied protection, the cable outer sheaths may be exposed to overvoltages with higher values than those of the main insulation. Although the analysis was performed for 110 kV lines, the conclusions are general and are also applicable to power lines with higher rated voltages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.