Proterozoic basement aquifers are the primary source of water supply for the local populations in the Aseer (also spelled “Asir” or “Assir”) province located in the southwest of Saudi Arabia (SA) since high evaporation rates and low rainfall are experienced in the region. Groundwater assets are receiving a lot of attention as a result of the growing need for water due to increased urbanization, population, and agricultural expansion. People have been pushed to seek groundwater from less reliable sources, such as fracture bedrocks. This study is centered on identifying the essential contributing parameters utilizing an integrated multi-criteria analysis and geospatial tools to map groundwater potential zones (GWPZs). The outcome of the GWPZs map was divided into five categories, ranging from very high to negligible potential. The results concluded that 57% of the investigated area (southwestern parts) showed moderate to very high potentials, attributed to Wadi deposits, low topography, good water quality, and presence of porosity and permeability. In contrast, the remaining 43% (northeastern and southeastern parts) showed negligible aquifer potential zones. The computed GWPZs were validated using dug well sites in moderate to very high aquifer potentials. Total dissolved solids (TDS) and nitrate (NO32−) concentrations were highest and lowest in aquifers, mainly in negligible and moderate to very high potential zones, respectively. The results were promising and highlighted that such integrated analysis is decisive and can be implemented in any region facing similar groundwater expectations and management.
In situ chemical oxidation (ISCO) of petroleum hydrocarbons (PHCs) within groundwater is considered a proven approach to addressing PHC‐impacted groundwater in nonsaline environments. One of the most common oxidants used for oxidation of PHCs in groundwater is hydrogen peroxide (H2O2). Due to its highly reactive nature, H2O2 is often stabilized to aid in increasing its reactivity lifespan. Limited research and application of ISCO has been completed in warm, saline groundwater environments. Furthermore, even fewer studies have been completed in these environments for ISCO using stabilized H2O2. In this research, stabilized H2O2 was examined to determine its effectiveness in the treatment of PHCs and the additive methyl tert‐butyl ether (MTBE). Three stabilizers (citrate, phytate, silica [SiO2]) were tested to determine if the stabilizers could enhance and extend the treatment life of H2O2 within saline groundwater. To determine the effect of salinity on the three stabilizers, groundwater and aquifer samples were collected from two saline locations that had different salinity (total dissolved solids of about 7,000 mg/L and 18,000 mg/L). Specific target chemicals for treatment were water soluble, mobile components of gasoline including benzene, toluene, ethylbenzene, xylenes, (BTEX) and MTBE. Previous studies using unactivated persulfate indicated that the PHCs within the groundwater could be oxidized, however, only limited oxidation of the MTBE could be affected. The results of the laboratory tests indicated that greater than 95 percent of the target hydrocarbons were removed within 7 days of treatment. Microcosms with citrate‐stabilized H2O2 demonstrated a significantly faster and greater decline with most hydrocarbon concentrations reaching < 5 μg/L. The exceptions were ethylbenzene and m‐xylene, which were slightly decreased to about 30 and 20 μg/L, respectively. Initial mean concentrations of the BTEX compounds within the citrate‐stabilized microcosms were 10,554 μg/L, 9,318 μg/L, 6,859 μg/L, and 14,435 μg/L, respectively. The silicate‐stabilized H2O2 microcosms showed no significant benefit over the unstabilized control microcosms. The better performance of citrate‐stabilized microcosms was confirmed by increasing δ13C values of remaining hydrocarbons. MTBE declined from > 400 mg/L to < 100 mg/L in all microcosms, again with the best removal (> 90 percent) being measured in the citrate‐stabilized microcosms. Unfortunately, H2O2 oxidation in the microcosms also resulted in production of up to 40 mg/L TBA or approximately 10 percent of the MTBE oxidized.
Seawater has intruded into many of Saudi Arabia’s Red Sea coastal aquifers, with varying degrees of extension depending on location, hydrogeology, and population density. This study aimed to evaluate and comprehend the processes that influence the hydrogeochemical characteristics of the coastal aquifer in Saudi Arabia’s Khulais region. Groundwater samples were taken from nineteen locations during the winter and summer of 2021, and data from major ions and trace elements were examined and interpreted using ArcGIS software. The total dissolved solids (TDS) concentrations ranged between 480 and 15,236 mg/L and 887–18,620 mg/L in winter and summer, respectively. Groundwater TDS concentration was observed to be influenced by groundwater flow, lithogenic, anthropogenic, and seawater intrusion in this study (2021) when compared to 2016. The concentration of nitrate (NO3−) and strontium (Sr) in most samples exceeds the drinking guidelines. The occurrence of high concentrations of bromide (Br), Fluoride (F), Iron (Fe) (winter and summer) and Aluminum (Al), Boron (B), Chromium (Cr), Nickel (Ni), lead (Pb), cadmium (Cd), cobalt (Co), copper (Cu) and manganese (Mn) (winter) was also exhibited and observed up to more than drinking and irrigation limits. The central part of the study area was affected by seawater intrusion. The hydraulic conductivity of the topsoil was measured, and it ranged from 0.24 to 29.3 m/day. Based on electrical conductivity (EC) and sodium absorption ratio, most aquifer samples were unsuitable for irrigation (SAR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.