For 5G and beyond cellular communication systems, new coding and modulation techniques are suggested to reach the requirements of high data rate and quality of service. In this paper, a new space-time coded orthogonal transform division multiplexing (STC OTDM) technique is proposed for 5G applications. The proposed system is used to enhance the data rate and performance of the orthogonal transform division multiplexing (OTDM) technique. The proposed system is based on using space-time coding (STC) with OTDM to increase the system diversity and consequently the system performance. The OTDM technique is based on transmitting data on orthogonal basis functions obtained from the Singular Value Decomposition (SVD) of the channel impulse response of the desired user. Various modulation techniques like QPSK, 64-QAM, and 256-QAM are investigated using different subcarriers and channel models. The simulation results show that the proposed system achieved a better performance when compared to classical and recent multicarrier techniques. The proposed technique increases the diversity gain resulting in a decrease in the fading effect of the multipath channel and an enhancement in the bit error rate (BER) performance. The proposed technique also provides a secure data transmission to the desired user as his data is sent on the basis functions extracted from his own channel impulse response that cannot be decoded by other users.
Both light emitting diode (LED) characteristics for illumination and communication simultaneously have made visible light communication-orthogonal frequency division multiplexing (VLC-OFDM) a strong competitive to radio frequency (RF). In this juncture, to improve signal to noise ratio (SNR) and coverage contour, the wavelet-OFDM is suggested for indoor VLC systems. In this paper, a wavelet VLC-OFDM is proposed for imaging multiple-input multiple-output (MIMO) systems. The proposed wavelet-OFDM is exploited for a hybrid space-frequency domain pre-equalization technique instead of the traditional fast Fourier transform (FFT)-OFDM technique. The Meyer filter is selected and employed in the proposed technique. A comparable achievement is elaborated for several numbers of channels to achieve the enhanced performance in terms of bit rate and coverage contour. In addition, a useful comparison is executed between our wavelet VLC-OFDM and the traditional FFT-OFDM for a hybrid space-frequency domain pre-equalization technique. The simulation results emphasize the superiority point of wavelet VLC-OFDM MIMO system by improving the coverage contour by ~20% over the traditional OFDM at a 10−3 bit error rate (BER) target. Hence, the proposed technique can be potentially executed in indoor VLC-MIMO systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.