Machine learning in association with remote sensing has assisted agricultural specialists in monitoring, classification and yield estimation of crops. Tobacco is a major taxable crop of Pakistan, however the existing traditional methods for its monitoring and yield estimation are not only expensive and time consuming but also have limitations in terms of accuracy of collected data by a large number of diverse human surveyors. Due to the existence of such loopholes in the employed mechanism for tobacco crop monitoring and yield estimation, its illicit growth and distribution is on the rise. In this paper we have established a sophisticated machine learning mechanism for tobacco crop estimation using temporally stacked sentinel-2 satellite's data of Pakistan. Instead of the conventional approach of using single remotely sensed imagery for the target crop classification, we propose a machine learning based classification algorithm while keeping in view the phonological cycle of the target tobacco crop. Using the proposed mechanism, the temporal variations within the tobacco crop and its association with the variations of other vegetation is considered to improve the classification performance of the employed machine learning algorithm. Furthermore, the impact of stacking the vegetation indices derived from near infrared and vegetation red edge bands of sentinel-2 with the original sentinel-2 datasets, including Normalized Difference Vegetation Index (NDVI) and Normalized Difference Index 45 (NDI45), on the classification performance of the machine learning mechanism is investigated. Ground Truth data for training of our Artificial Neural Networks classifier, was obtained using indigenously developed survey application "GEOSurvey". Experiments were conducted using our proposed mechanism while considering various input data setups-including single date imagery, temporally stacked datasets based on phonological cycle of tobacco crop and different combinations of NDVI and NDI45 stacking. Our proposed experimental setup consisting of temporally stacked imagery along with NDVI stacking results in the best classification performance of 95.81% with reference to the single date imagery stacked with NDVI and NDI45, with performance gain of 07.32%.
Silicon (Si), despite being abundant in nature, is still not considered a necessary element for plants. Si supplementation in plants has been extensively studied over the last two decades, and the role of Si in alleviating biotic and abiotic stress has been well documented. Owing to the noncorrosive nature and sustainability of elemental Si, Si fertilization in agricultural practices has gained more attention. In this review, we provide an overview of different smart fertilizer types, application of Si fertilizers in agriculture, availability of Si fertilizers, and experiments conducted in greenhouses, growth chambers, and open fields. We also discuss the prospects of promoting Si as a smart fertilizer among farmers and the research community for sustainable agriculture and yield improvement. Literature review and empirical studies have suggested that the application of Si-based fertilizers is expected to increase in the future. With the potential of nanotechnology, new nanoSi (NSi) fertilizer applications may further increase the use and efficiency of Si fertilizers. However, the general awareness and scientific investigation of NSi need to be thoughtfully considered. Thus, we believe this review can provide insight for further research into Si fertilizers as well as promote Si as a smart fertilizer for sustainability and crop improvement.
This research work aims to develop a deep learning-based crop classification framework for remotely sensed time series data. Tobacco is a major revenue generating crop of Khyber Pakhtunkhwa (KP) province of Pakistan, with over 90% of the country's Tobacco production. In order to analyze the performance of the developed classification framework, a pilot sub-region named Yar Hussain is selected for experimentation work. Yar Hussain is a tehsil of district Swabi, within KP province of Pakistan, having highest contribution to the gross production of the KP Tobacco crop. KP generally consists of a diverse crop land with different varieties of vegetation, having similar phenology which makes crop classification a challenging task. In this study, a temporal convolutional neural network (TempCNNs) model is implemented for crop classification, while considering remotely sensed imagery of the selected pilot region with specific focus on the Tobacco crop. In order to improve the performance of the proposed classification framework, instead of using the prevailing concept of utilizing a single satellite imagery, both Sentinel-2 and Planet-Scope imageries are stacked together to assist in providing more diverse features to the proposed classification framework. Furthermore, instead of using a single date satellite imagery, multiple satellite imageries with respect to the phenological cycle of Tobacco crop are temporally stacked together which resulted in a higher temporal resolution of the employed satellite imagery. The developed framework is trained using the ground truth data. The final output is obtained as an outcome of the SoftMax function of the developed model in the form of probabilistic values, for the classification of the selected classes. The proposed deep learning-based crop classification framework, while utilizing multi-satellite temporally stacked imagery resulted in an overall classification accuracy of 98.15%. Furthermore, as the developed classification framework evolved with specific focus on Tobacco crop, it resulted in best Tobacco crop classification accuracy of 99%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.