The neonatal mammalian heart is capable of regeneration for a brief window of time after birth. However, this regenerative capacity is lost within the first week of life, which coincides with a postnatal shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation, particularly towards fatty-acid utilization. Despite the energy advantage of fatty-acid beta-oxidation, cardiac mitochondria produce elevated rates of reactive oxygen species when utilizing fatty acids, which is thought to play a role in cardiomyocyte cell-cycle arrest through induction of DNA damage and activation of DNA-damage response (DDR) pathway. Here we show that inhibiting fatty-acid utilization promotes cardiomyocyte proliferation in the postnatatal heart. First, neonatal mice fed fatty-acid deficient milk showed prolongation of the postnatal cardiomyocyte proliferative window, however cell cycle arrest eventually ensued. Next, we generated a tamoxifen-inducible cardiomyocyte-specific, pyruvate dehydrogenase kinase 4 (PDK4) knockout mouse model to selectively enhance oxidation of glycolytically derived pyruvate in cardiomyocytes. Conditional PDK4 deletion resulted in an increase in pyruvate dehydrogenase activity and consequently an increase in glucose relative to fatty-acid oxidation. Loss of PDK4 also resulted in decreased cardiomyocyte size, decreased DNA damage and expression of DDR markers and an increase in cardiomyocyte proliferation. Following myocardial infarction, inducible deletion of PDK4 improved left ventricular function and decreased remodelling. Collectively, inhibition of fatty-acid utilization in cardiomyocytes promotes proliferation, and may be a viable target for cardiac regenerative therapies.
A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes 1,2 and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest 3 . Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 doubleknockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin
Background: Metabolic remodeling precedes most alterations during cardiac hypertrophic growth under hemodynamic stress. The elevation of glucose utilization has been recognized as a hallmark of metabolic remodeling. However, its role in cardiac hypertrophic growth and heart failure in response to pressure overload remains to be fully illustrated. Here, we aimed to dissect the role of cardiac PKM1 (pyruvate kinase muscle isozyme 1) in glucose metabolic regulation and cardiac response under pressure overload. Methods: Cardiac specific deletion of PKM1 was achieved by crossing the floxed PKM1 mouse model with the cardiomyocyte-specific Cre transgenic mouse. PKM1 transgenic mice were generated under the control of tetracycline response elements, and cardiac specific overexpression of PKM1 was induced by doxycycline administration in adult mice. Pressure overload was triggered by transverse aortic constriction (TAC). Primary neonatal rat ventricular myocytes were used to dissect molecular mechanisms. Moreover, metabolomics and NMR spectroscopy analyses were conducted to determine cardiac metabolic flux in response to pressure overload. Results: We found that PKM1 expression is reduced in failing human and mouse hearts. Importantly, cardiomyocyte-specific deletion of PKM1 exacerbates cardiac dysfunction and fibrosis in response to pressure overload. Inducible overexpression of PKM1 in cardiomyocytes protects the heart against TAC-induced cardiomyopathy and heart failure. At the mechanistic level, PKM1 is required for the augmentation of glycolytic flux, mitochondrial respiration, and ATP production under pressure overload. Furthermore, deficiency of PKM1 causes a defect in cardiomyocyte growth and a decrease in pyruvate dehydrogenase complex activity at both in vitro and in vivo levels. Conclusions: These findings suggest that PKM1 plays an essential role in maintaining a homeostatic response in the heart under hemodynamic stress.
Background: Primary valvular heart disease is a prevalent cause of morbidity and mortality in both industrialized and developing countries. Although the primary consequence of valvular heart disease is myocardial dysfunction, treatment of valvular heart diseases centers around valve repair or replacement rather than prevention or reversal of myocardial dysfunction. This is particularly evident in primary mitral regurgitation (MR), which invariably results in eccentric hypertrophy and left ventricular (LV) failure in the absence of timely valve repair or replacement. The mechanism of LV dysfunction in primary severe MR is entirely unknown. Methods: Here, we developed the first mouse model of severe MR. Valvular damage was achieved by severing the mitral valve leaflets and chords with iridectomy scissors, and MR was confirmed by echocardiography. Serial echocardiography was performed to follow up LV morphology and systolic function. Analysis of cardiac tissues was subsequently performed to evaluate valve deformation, cardiomyocyte morphology, LV fibrosis, and cell death. Finally, dysregulated pathways were assessed by RNA-sequencing analysis and immunofluorescence. Results: In the ensuing 15 weeks after the induction of MR, gradual LV dilatation and dysfunction occurred, resulting in severe systolic dysfunction. Further analysis revealed that severe MR resulted in a marked increase in cardiac mass and increased cardiomyocyte length but not width, with electron microscopic evidence of sarcomere disarray and the development of sarcomere disruption. From a mechanistic standpoint, severe MR resulted in activation of multiple components of both the mammalian target of rapamycin and calcineurin pathways. Inhibition of mammalian target of rapamycin signaling preserved sarcomeric structure and prevented LV remodeling and systolic dysfunction. Immunohistochemical analysis uncovered a differential pattern of expression of the cell polarity regulator Crb2 (crumbs homolog 2) along the longitudinal axis of cardiomyocytes and close to the intercalated disks in the MR hearts. Electron microscopy images demonstrated a significant increase in polysome localization in close proximity to the intercalated disks and some areas along the longitudinal axis in the MR hearts. Conclusions: These results indicate that LV dysfunction in response to severe MR is a form of maladaptive eccentric cardiomyocyte hypertrophy and outline the link between cell polarity regulation and spatial localization protein synthesis as a pathway for directional cardiomyocyte growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.