This article covers the latest fault-tolerant control system (FTCS) developments and applications. FTCSs aim to maintain stability, minimize performance degradation, and compensate for system component faults. These systems benefit from and mission-critical applications where service continuity is crucial. This article describes several sensor and actuator errors. Fault Tolerant Control (FTC) includes active, passive, and hybrid approaches and the latest design techniques. Finally, FTCS stability and reliability analysis and research gaps were reviewed. This study provides current and future FTCS researchers with the latest trends and applications. This study's contribution. System component failures and instability are two major causes of control performance decline. Fault-tolerant control, or FTC, was developed in recent decades to improve control system resiliency. Active and passive FTC techniques exist. This paper examines control system faults, failure causes, and the latest resilience solutions. Fault detection and isolation (FDI) and active fault tolerance control (FTC) advances were examined. Encouraging FTC and FDI research, a comprehensive comparison of several aspects is performed to understand the pros and cons of various FTC techniques.
This paper presents the steps of designing, controlling, and implementing a 3kW Gallium-Nitride (GaN)-based bridgeless totem-pole power factor corrector (PFC) for single-phase 230V rectifier applications. The bridgeless design of such a converter combined with zero-recovery switching loss of GaN transistors enables more efficient design operation compared to traditional Si-based solutions. Thermally efficient design with forced-air cooling for the switching devices increased the power density beyond 100W/inch3 while keeping the power switches temperatures less than the thermal limits. Continuous Conduction Mode (CCM) was adopted in this work for better converter stability and was analyzed thoroughly along with the losses breakdown for each part of the converter. The digital control model of the converter was discussed in detail accompanied by the hardware design steps for the converter. Experimental results proved a maximum efficiency of 98.9% during 2.4kW operation and 98.6% during 3kW (full load) operation with minimum Total Harmonics Distortion (THD) of AC input current of 2.78% at rated current (13A) when converting the AC input voltage (230V) to 400 VDC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.