Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice).
The aim of this work was to elucidate the structure-activity relationship of new peptide-modified gemini surfactant-based carriers. Glycyl-lysine modified gemini surfactants that differ in the length and degree of unsaturation of their alkyl tail were used to engineer DNA nano-assemblies. To probe the optimal nitrogen to phosphate (N/P) ratio in the presence of helper lipid, in vitro gene expression and cell toxicity measurements were carried out. Characterization of the nano-assemblies was accomplished by measuring the particle size and surface charge. Morphological characteristics and lipid organization were studied by small angle X-ray scattering technique. Lipid monolayers were studied using a Langmuir-Blodgett trough. The highest activity of glycyl-lysine modified gemini surfactants was observed with the 16-carbon tail compound at 2.5 N/P ratio, showing a 5- to 10-fold increase in the level of reporter protein compared to the 12 and 18:1 carbon tail compounds. This ratio is significantly lower compared to the previously studied gemini surfactants with alkyl or amino- spacers. In addition, the 16-carbon tail compound exhibited the highest cell viability (85%). This high efficiency is attributed to the lowest critical micelle concentration of the 16-tail gemini surfactant and a balanced packing of the nanoparticles by mixing a saturated and unsaturated lipid together. At the optimal N/P ratio, all nanoparticles exhibited an inverted hexagonal lipid assembly. The results show that the length and nature of the tail of the gemini surfactants play an important role in determining the transgene efficiency of the delivery system. We demonstrated here that the interplay between the headgroup and the nature of tail is specific to each series, thus in the process of rational design, the contribution of the latter should be assessed in the appropriate context.
Purpose. Cationic gemini surfactants have been studied as non-viral vectors for gene therapy. Clinical applications of cationic lipid/DNA lipoplexes are restricted by their instability in aqueous formulations. In this work, we investigated the influence of lyophilization on the essential physiochemical properties and in vitro transfection of gemini surfactant-lipoplexes. Additionally, we evaluated the feasibility of lyophilization as a technique for preparing lipoplexes with long term stability. Methods. A gemini surfactant [12-7NH-12] and plasmid DNA encoding for interferon-γ were used to prepare gemini surfactant/pDNA [P/G] lipoplexes. Helper lipid DOPE [L] was incorporated in all formulation producing a [P/G/L] system. Sucrose and trehalose were utilized as stabilizing agents. To evaluate the ability of lyophilization to improve the stability of gemini surfactant-based lipoplexes, four lyophilized formulations were stored at 25˚C for three months. The formulations were analyzed at different time-points for physiochemical properties and in vitro transfection. Results. The results showed that both sucrose and trehalose provided anticipated stabilizing effect. The transfection efficiency of the lipoplexes increased 2-3 fold compared to fresh formulations upon lyophilization. This effect can be attributed to the improvement of DNA compaction and changes in the lipoplex morphology due to the lyophilization/rehydration cycles. The physiochemical properties of the lyophilized formulations were maintained throughout the stability study. All lyophilized formulations showed a significant loss of gene transfection activity after three months of storage. Nevertheless, no significant losses of transfection efficiency were observed for three formulations after two months storage at 25 ˚C. Conclusion. Lyophilization significantly improved the physical stability of gemini surfactant-based lipoplexes compared to liquid formulations. As well, lyophilization improved the transfection efficiency of the lipoplexes. The loss of transfection activity upon storage is most probably due to the conformational changes in the supramolecular structure of the lipoplexes as a function of time and temperature rather than to DNA degradation. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.