Foundation piles transfer the applied vertical load to the surrounding soil by skin friction and base resistance. These two components induce stress in the soil. The load transfer is still not fully recognized, and some pile load tests analyses have raised many doubts. The present paper aimed to measure the stress levels during pile load tests in laboratory conditions. This research examined the possibilities of using thin, flexible sensors in measuring the stress in soil. Two sensors were used: tactile pressure sensor with mapping system and color film pressure sensors with digital analyzing. Calibration and preliminary tests of the sensors have been described. This calibration proved that this kind of sensor could measure the stress in the soil in laboratory conditions. The results of stress distribution in the soil, shown as pressure maps, have been presented. Significant stress changes were observed in pile load tests. Rough and smooth piles were compared in the analyses. Stress distribution was the result of simultaneous interaction of pile skin and base. The knowledge about stresses surrounding the pile allows us to carry out a deeper analysis of the pile–soil interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.