Sharing the spectrum with in-band full-duplex (FD) primary users (PU) is a challenging and interesting problem in the underlay cognitive radio (CR) systems. The self-interference introduced at the primary network may dramatically impede the secondary user (SU) opportunity to access the spectrum. To tackle this problem, we use the so-called improper Gaussian signaling. Particularly, we assume a system with a SU pair working in a half-duplex mode that uses improper Gaussian signaling while the FD PU pair implements the regular proper Gaussian signaling. First, we derive a closed form expression and an upper bound for the SU and PU outage probabilities, respectively. Second, we optimize the SU signal parameters to minimize its outage probability while maintaining the required PU quality-of-service based on the average channel state information (CSI). Moreover, we provide the conditions to reap merits from employing improper Gaussian signaling at the SU. Third, we design the SU signal parameters based on perfect knowledge of its direct link instantaneous CSI and investigate all benefits that can be achieved at both the SU and PU. Finally, we provide some numerical results that demonstrate the advantages of using improper Gaussian signaling to access the spectrum of the FD PU.
Abstract-Improper Gaussian signaling (IGS) scheme has been recently shown to provide performance improvements in interference limited networks as opposed to the conventional proper Gaussian signaling (PGS) scheme. In this paper, we implement the IGS scheme in overlay cognitive radio system, where the secondary transmitter broadcasts a mixture of two different signals. The first signal is selected from the PGS scheme to match the primary message transmission. On the other hand, the second signal is chosen to be from the IGS scheme in order to reduce the interference effect on the primary receiver. We then optimally design the overlay cognitive radio to maximize the secondary link achievable rate while satisfying the primary network quality of service requirements. In particular, we consider full and partial channel knowledge scenarios and derive the feasibility conditions of operating the overlay cognitive radio systems. Moreover, we derive the superiority conditions of the IGS schemes over the PGS schemes supported with closed form expressions for the corresponding power distribution and the circularity coefficient and parameters. Simulation results are provided to support our theoretical derivations.
In this paper, the asymptotic performance of the lattice sequential decoder for LAttice Space-Time (LAST) coded MIMO channel is analyzed. We determine the rates achievable by lattice coding and sequential decoding applied to such a channel. The diversity-multiplexing tradeoff (DMT) under lattice sequential decoding is derived as a function of its parameter-the bias term, which is critical for controlling the amount of computations required at the decoding stage. Achieving low decoding complexity requires increasing the value of the bias term. However, this is done at the expense of losing the optimal tradeoff of the channel. In this work, we derive the tail distribution of the decoder's computational complexity in the high signal-to-noise ratio regime. Our analysis reveals that the tail distribution of such a low complexity decoder is dominated by the outage probability of the channel for the underlying coding scheme. Also, the tail exponent of the complexity distribution is shown to be equivalent to the DMT achieved by lattice coding and lattice sequential decoding schemes. We derive the asymptotic average complexity of the sequential decoder as a function of the system parameters. In particular, we show that there exists a cut-off multiplexing gain for which the average computational complexity of the decoder remains bounded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.