Bug fixing accounts for a large amount of the software maintenance resources. Generally, bugs are reported, fixed, verified and closed. However, in some cases bugs have to be re-opened. Re-opened bugs increase maintenance costs, degrade the overall user-perceived quality of the software and lead to unnecessary rework by busy practitioners.In this paper, we study and predict re-opened bugs through a case study on the Eclipse project. We structure our study along 4 dimensions: 1) the work habits dimension (e.g., the weekday on which the bug was initially closed on), 2) the bug report dimension (e.g., the component in which the bug was found) 3) the bug fix dimension (e.g., the amount of time it took to perform the initial fix) and 4) the team dimension (e.g., the experience of the bug fixer). Our case study on the Eclipse Platform 3.0 project shows that the comment and description text, the time it took to fix the bug, and the component the bug was found in are the most important factors in determining whether a bug will be re-opened. Based on these dimensions we create decision trees that predict whether a bug will be re-opened after its closure. Using a combination of our dimensions, we can build explainable prediction models that can achieve 62.9% precision and 84.5% recall when predicting whether a bug will be re-opened.
Research studying the quality of software applications continues to grow rapidly with researchers building regression models that combine a large number of metrics. However, these models are hard to deploy in practice due to the cost associated with collecting all the needed metrics, the complexity of the models and the black box nature of the models. For example, techniques such as PCA merge a large number of metrics into composite metrics that are no longer easy to explain. In this paper, we use a statistical approach recently proposed by Cataldo et al. to create explainable regression models. A case study on the Eclipse open source project shows that only 4 out of the 34 code and process metrics impacts the likelihood of finding a post-release defect. In addition, our approach is able to quantify the impact of these metrics on the likelihood of finding post-release defects. Finally, we demonstrate that our simple models achieve comparable performance over more complex PCA-based models while providing practitioners with intuitive explanations for its predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.