The recent approval of a prostate cancer vaccine has renewed hope for anticancer immunotherapies. However, the immunosuppressive tumor microenvironment may limit the effectiveness of current immunotherapies. Antiangiogenic agents have the potential to modulate the tumor microenvironment and improve immunotherapy, but they often are used at high doses in the clinic to prune tumor vessels and paradoxically may compromise various therapies. Here, we demonstrate that targeting tumor vasculature with lower vascular-normalizing doses, but not high antivascular/antiangiogenic doses, of an anti-VEGF receptor 2 (VEGFR2) antibody results in a more homogeneous distribution of functional tumor vessels. Furthermore, lower doses are superior to the high doses in polarizing tumor-associated macrophages from an immune inhibitory M2-like phenotype toward an immune stimulatory M1-like phenotype and in facilitating CD4 + and CD8 + T-cell tumor infiltration. Based on this mechanism, scheduling lower-dose anti-VEGFR2 therapy with T-cell activation induced by a whole cancer cell vaccine therapy enhanced anticancer efficacy in a CD8 + T-cell-dependent manner in both immune-tolerant and immunogenic murine breast cancer models. These findings indicate that vascular-normalizing lower doses of anti-VEGFR2 antibody can reprogram the tumor microenvironment away from immunosuppression toward potentiation of cancer vaccine therapies. Given that the combinations of high doses of bevacizumab with chemotherapy have not improved overall survival of breast cancer patients, our study suggests a strategy to use antiangiogenic agents in breast cancer more effectively with active immunotherapy and potentially other anticancer therapies.
The blood vessels of cancerous tumours are leaky1–3 and poorly organized4–7. This can increase the interstitial fluid pressure (IFP) inside tumours and reduce blood supply to them, which impairs drug delivery8–9. Anti-angiogenic therapies – which “normalize” the abnormal blood vessels in tumours by making them less leaky – have been shown to improve the delivery and effectiveness of chemotherapeutics with low molecular-weights10, but it remains unclear whether normalizing tumour vessels can improve the delivery of nanomedicines. Here we show that repairing the abnormal vessels in mammary tumours, by blocking vascular endothelial growth factor (VEGF) receptor-2, improves the delivery of small nanoparticles (12nm diameter) while hindering the delivery of large nanoparticles (125nm diameter). We utilize a mathematical model to show that reducing vessel wall pore sizes through normalization decreases IFP in tumours, allowing small nanoparticles to enter them more rapidly. However, increased steric and hydrodynamic hindrances, also associated with smaller pores, make it more difficult for large nanoparticles to enter tumours. Our results further suggest that smaller (~12nm) nanomedicines are ideal for cancer therapy, owing to superior tumour penetration.
Summary The PI3K-AKT-FoxO pathway is integral to lifespan regulation in lower organisms and essential for the stability of long-lived cells in mammals. Here, we report the impact of combined FoxO1, 3 and 4 deficiencies on mammalian brain physiology with a particular emphasis on the study of the neural stem/progenitor cell (NSC) pool. We show that the FoxO family plays a prominent role in NSC proliferation and renewal. FoxO deficient mice show initial increased brain size and proliferation of neural progenitor cells during early postnatal life, followed by precocious significant decline in the NSC pool and accompanying neurogenesis in adult brains. Mechanistically, integrated transcriptomic, promoter and functional analyses of FoxO deficient NSC cultures identified direct gene targets with known links to the regulation of human brain size and the control of cellular proliferation, differentiation, and oxidative defense. Thus, the FoxO family coordinately regulates diverse genes and pathways to govern key aspects of NSC homeostasis in the mammalian brain.
Tumor neovascularization and growth might be promoted by the recruitment of bone marrow-derived cells (BMDC), which include endothelial precursor cells and "vascular modulatory" myelomonocytic (CD11b+) cells. BMDCs may also drive tumor regrowth after certain chemotherapeutic and vascular disruption treatments. In this study, we evaluated the role of BMDC recruitment in breast and lung carcinoma xenograft models after local irradiation (LI). We depleted the bone marrow by including whole-body irradiation (WBI) of 6 Gy as part of a total tumor dose of 21 Gy, and compared the growth delay with the one achieved after LI of 21 Gy. In both models, the inclusion of WBI induced longer tumor growth delays. Moreover, WBI increased lung tumor control probability by LI. Exogenous delivery of BMDCs from radiation-naïve donors partially abrogated the WBI effect. Myeloid BMDCs, primarily macrophages, rapidly accumulated in tumors after LI. Intratumoral expression of stromal-derived factor 1α (SDF-1α), a chemokine that promotes tissue retention of BMDCs, was noted 2 days after LI. Conversely, treatment with an inhibitor of SDF-1α receptor CXCR4 (AMD3100) with LI significantly delayed tumor regrowth. However, when administered starting from 5 days post-LI, AMD3100 treatment was ineffective. Lastly, with restorative bone marrow transplantation of Tie2-GFP-labeled BMDC population, we observed an increased number of monocytes but not endothelial precursor cells in tumors that recurred following LI. Our results suggest that an increase in intratumoral SDF-1α triggered by LI recruits myelomonocytes/macrophages which promotes tumor regrowth. Cancer Res; 70(14); 5679-85. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.