The majority of the algorithms used to solve hard optimization problems today are population metaheuristics. These methods are often presented under a purely algorithmic angle, while insisting on the metaphors which led to their design. We propose in this article to regard population metaheuristics as methods making evolution a probabilistic sampling of the objective function, either explicitly, implicitly, or directly, via processes of learning, diversification, and intensification. We present a synthesis of some metaheuristics and their functioning seen under this angle, called Adaptive Learning Search. We discuss how to design metaheuristics following this approach, and propose an implementation with our Open Metaheuristics framework, along with concrete examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.