The blockchain paradigm provides a mechanism for content dissemination and distributed consensus on Peer-to-Peer (P2P) networks. While this paradigm has been widely adopted in industry, it has not been carefully analyzed in terms of its network scaling with respect to the number of peers. Applications for blockchain systems, such as cryptocurrencies and IoT, require this form of network scaling. In this paper, we propose a new stochastic network model for a blockchain system. We identify a structural property called one-endedness, which we show to be desirable in any blockchain system as it is directly related to distributed consensus among the peers. We show that the stochastic stability of the network is sufficient for the one-endedness of a blockchain. We further establish that our model belongs to a class of network models, called monotone separable models. This allows us to establish upper and lower bounds on the stability region. The bounds on stability depend on the connectivity of the P2P network through its conductance and allow us to analyze the scalability of blockchain systems on large P2P networks. We verify our theoretical insights using both synthetic data and real data from the Bitcoin network.
The modern world is becoming increasingly dependent on computing and communication technology to function, but unfortunately its application and impact on areas such as critical infrastructure and industrial control system (ICS) networks remains to be thoroughly studied. Significant research has been conducted to address the myriad security concerns in these areas, but they are virtually all based on artificial testbeds or simulations designed on assumptions about their behavior either from knowledge of traditional IT networking or from basic principles of ICS operation. In this work, we provide the most detailed characterization of an example ICS to date in order to determine if these common assumptions hold true. A live power distribution substation is observed over the course of two and a half years to measure its behavior and evolution over time. Then, a horizontal study is conducted that compared this behavior with three other substations from the same company. Although most predictions were found to be correct, some unexpected behavior was observed that highlights the fundamental differences between ICS and IT networks including round trip times dominated by processing speed as opposed to network delay, several well known TCP features being largely irrelevant, and surprisingly large jitter from devices running real-time operating systems. The impact of these observations is discussed in terms of generality to other embedded networks, network security applications, and the suitability of the TCP protocol for this environment.
Various link bandwidth adjustment mechanisms are being developed to save network energy. However, their interaction with congestion control can significantly reduce network throughput, and is not well understood. We firstly put forward a framework to study this interaction, and then propose an easily implementable dynamic bandwidth adjustment (DBA) mechanism for the links. In DBA, each link updates its bandwidth according to an integral control law to match its average buffer size with a target buffer size. We prove that DBA reduces link bandwidth without sacrificing throughput---DBA only turns off excess bandwidth---in the presence of congestion control. Preliminary ns2 simulations confirm this result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.