The fabrication of patterned graphene electronics at high resolution is an important challenge for many applications in microelectronics. Here, we demonstrate the conversion of positive photoresist (PR), commonly employed in the commercial manufacture of consumer electronics, into laser-induced graphene (LIG). Sequential lasing converts the PR photopolymer first into amorphous carbon, then to photoresist-derived LIG (PR-LIG). The resulting material possesses good conductivity and is easily doped with metal or other additives for additional functionality. Furthermore, photolithographic exposure of PR prior to lasing enables the generation of PR-LIG patterns small enough to be invisible to the naked eye. By exploiting PR as a photopatternable LIG precursor, PR-LIG can be synthesized with a spatial resolution of ∼10 μm, up to 15 times smaller than conventional LIG patterning methods. The patterning of these small PR-LIG features could offer a powerful and broadly accessible strategy for the fabrication of microscale LIG-derived nanocomposites for on-chip devices.
Grain growth and phase stability of a nanocrystalline face-centered cubic (fcc) Ni0.2Fe0.2Co0.2Cr0.2Cu0.2 high-entropy alloy (HEA), either thermally-or irradiation-induced, are investigated through in-situ and post-irradiation transmission electron microscopy (TEM) characterization. Synchrotron and lab X-ray diffraction measurements are carried out to determine the microstructural evolution and phase stability with improved statistics. Under in-situ TEM observation, the fcc structure is stable at 300 C with a small amount of grain growth from 15.8 to ~ 20 nm being observed after 1800 s. At 500 C, however, some abnormal growth activities are observed after 1400 s, and secondary phases are formed. Under 3 MeV Ni room temperature ion irradiation up to an extreme dose of nearly 600 displacements per atom, the fcc phase is stable and the average grain size increases from 15.6 to 25.2 nm. Grain growth mechanisms driven by grain rotation, grain boundary curvature, and disorder are discussed.
A nanoscale hierarchical dual-phase structure is reported to form in a nanocrystalline NiFeCoCrCu high-entropy-alloy (HEA) film via ion irradiation. Under the extreme energy deposition and consequent thermal energy dissipation induced by energetic particles, a fundamentally new phenomenon is revealed, in which the original single-phase face-centered-cubic (FCC) structure partially transforms into alternating nanometer layers of a body-centered-cubic (BCC) structure. The orientation relationship follows the Nishiyama-Wasserman relationship, that is, (011) BCC || (111) FCC and [100] BCC || [ 110] FCC. Simulation results indicate that Cr, as a BCC stabilizing element, exhibits a tendency to segregate to the stacking faults (SFs). Furthermore, the high densities of SFs and twin boundaries in each nanocrystalline grain serve to accelerate the nucleation and growth of the BCC phase during irradiation. By adjusting the irradiation parameters, desired thicknesses of the FCC and BCC phases in the laminates can be achieved. This work demonstrates the controlled formation of an attractive dual-phase nanolaminate structure under ion irradiation and provides a strategy for designing new derivate structures of HEAs.
High entropy alloys (HEAs) are promising materials for various applications including nuclear reactor environments. Thus, understanding their behavior under irradiation and exposure to different environments is important. Here, two sets of near-equiatomic CoCrCuFeNi thin films grown on either SiO2/Si or Si substrates were irradiated at room temperature with 11.5 MeV Au ions, providing similar behavior to exposure to inert versus corrosion environments. The film grown on SiO2 had relatively minimal change up to peak damage levels above 500 dpa, while the film grown on Si began intermixing at the substrate–film interface at peak doses of 0.1 dpa before transforming into a multi-silicide film at higher doses, all at room temperature with minimal thermal diffusion. The primary mechanism is radiation-enhanced diffusion via the inverse Kirkendall and solute drag effects. The results highlight how composition and environmental exposure affect the stability of HEAs under radiation and give insights into controlling these behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.