The interest in face recognition is moving toward real-world applications and uncontrolled sensing environments. An important application of interest is automated surveillance, where the objective is to recognize and track people who are on a watchlist. For this open world application, a large number of cameras that are increasingly being installed at many locations in shopping malls, metro systems, airports, etc., will be utilized. While a very large number of people will approach or pass by these surveillance cameras, only a small set of individuals must be recognized. That is, the system must reject every subject unless the subject happens to be on the watchlist. While humans routinely reject previously unseen faces as strangers, rejection of previously unseen faces has remained a difficult aspect of automated face recognition. In this paper, we propose an approach motivated by human perceptual ability of face recognition which can handle previously unseen faces. Our approach is based on identifying the decision region(s) in the face space which belong to the target person(s). This is done by generating two large sets of borderline images, projecting just inside and outside of the decision region. For each person on the watchlist, a dedicated classifier is trained. Results of extensive experiments support the effectiveness of our approach. In addition to extensive experiments using our algorithm and prerecorded images, we have conducted considerable live system experiments with people in realistic environments.
The adaptive changes in synaptic efficacy that occur between spiking neurons have been demonstrated to play a critical role in learning for biological neural networks. Despite this source of inspiration, many learning focused applications using Spiking Neural Networks (SNNs) retain static synaptic connections, preventing additional learning after the initial training period. Here, we introduce a framework for simultaneously learning the underlying fixed-weights and the rules governing the dynamics of synaptic plasticity and neuromodulated synaptic plasticity in SNNs through gradient descent. We further demonstrate the capabilities of this framework on a series of challenging benchmarks, learning the parameters of several plasticity rules including BCM, Oja's, and their respective set of neuromodulatory variants. The experimental results display that SNNs augmented with differentiable plasticity are sufficient for solving a set of challenging temporal learning tasks that a traditional SNN fails to solve, even in the presence of significant noise. These networks are also shown to be capable of producing locomotion on a high-dimensional robotic learning task, where near-minimal degradation in performance is observed in the presence of novel conditions not seen during the initial training period.
In person attributes recognition, we describe a person in terms of their appearance. Typically, this includes a wide range of traits including age, gender, clothing, and footwear. Although this could be used in a wide variety of scenarios, it generally is applied to video surveillance, where attribute recognition is impacted by low resolution, and other issues such as variable pose, occlusion and shadow. Recent approaches have used deep convolutional neural networks (CNNs) to improve the accuracy in person attribute recognition. However, many of these networks are relatively shallow and it is unclear to what extent they use contextual cues to improve classification accuracy. In this paper, we propose deeper methods for person attribute recognition. Interpreting the reasons behind the classification is highly important, as it can provide insight into how the classifier is making decisions. Interpretation suggests that deeper networks generally take more contextual information into consideration, which helps improve classification accuracy and generalizability. We present experimental analysis and results for whole body attributes using the PA-100K and PETA datasets and facial attributes using the CelebA dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.