Systems-of-Systems (SoS) combine heterogeneous, independent systems to offer complex functionalities for highly dynamic smart applications. Besides their dynamic architecture with continuous changes at runtime, SoS should be reliable and work without interrupting their operation and with no failures that could cause accidents or losses. SoS architectural design should facilitate the prediction of the impact of architectural changes and potential failures due to SoS behavior. However, existing approaches do not support such evaluation. Hence, these systems have been usually built without a proper evaluation of their architecture. This article presents Dynamic-SoS, an approach to predict/anticipate at design time the SoS architectural behavior at runtime to evaluate whether the SoS can sustain their operation. The main contributions of this approach comprise: (i) characterization of the dynamic architecture changes via a set of well-defined operators; (ii) a strategy to automatically include a reconfiguration controller for SoS simulation; and (iii) a means to evaluate architectural configurations that an SoS could assume at runtime, assessing their impact on the viability of the SoS operation. Results of our case study reveal Dynamic-SoS is a promising approach that could contribute to the quality of SoS by enabling prior assessment of its dynamic architecture.
Smart systems, such as smart cities, smart buildings, and autonomous cars, have recently gained increasing popularity. Each such system is essentially a System-of-Systems (SoS). SoS are dynamically established as alliances among independent and heterogeneous software systems to offer complex functionalities as a result of constituents interoperability. An SoS often supports critical application domains, and, as such, must be reliable. Many SoS have been specified and evaluated for their correct operation using static models. However, specification languages have not supported to capture their inherent dynamic nature nor enabled to monitor their operation. The main contribution of this paper is to present ASAS, an approach to Automatically generate Simulation models for smArt Systems (ASAS) in order to support evaluation of their operation. In particular, our approach makes it possible to transform formal models of the SoS architecture (expressed in SoSADL) into simulation models (expressed in DEVS). We evaluated our approach by conducting two case studies using a flood monitoring system that is intended to be part of a smart city. Results indicate that ASAS can successfully generate functional simulations for the SoS operation, which in turn can enable to reason and monitor an SoS operation, taking into account its dynamic nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.