This paper presents a novel technique for automated detection of protruding polyps in colonoscopy images using edge cross-section profiles (ECSP). We propose a part-based multiderivative ECSP that computes derivative functions of an edge cross-section profile and segments each of these profiles into parts. Therefore, we can model or extract features suitable for each part. Our features obtained from the parts can effectively describe complex properties of protruding polyps including the shape of the parts, texture, and protrusion and smoothness of the polyp surface. We evaluated our method against two existing polyp image detection techniques on 42 different polyps, including those with little protrusion. Each polyp has a large variation of appearance in viewing angles, light conditions, and scales in different images. The evaluation showed that our technique outperformed the existing techniques in both accuracy and analysis time. Our method has a higher area under the free-response receiver operating characteristic curve. For instance, when both techniques have a true positive rate for polyp image detection of 81.4%, the average number of false regions per image of our technique is 0.32 compared to 1.8 of the best existing technique under study. Additionally, our technique can precisely mark edges of candidate polyp regions as visual feedback. These results altogether indicate that our technique is promising to provide visual feedback of polyp regions in clinical practice.
We present a software system called "Polyp-Alert" to assist the endoscopist find polyps by providing visual feedback during colonoscopy. Polyp-Alert employs our previous edge-cross-section visual features and a rule-based classifier to detect a polyp edge-an edge along the contour of a polyp. The technique employs tracking of detected polyp edge(s) to group a sequence of images covering the same polyp(s) as one polyp shot. In our experiments, the software correctly detected 97.7% (42 of 43) of polyp shots on 53 randomly selected video files of entire colonoscopy procedures. However, Polyp-Alert incorrectly marked only 4.3% of a full-length colonoscopy procedure as showing a polyp when they do not. The test data set consists of about 18 h worth of video data from Olympus and Fujinon endoscopes. The technique is extensible to other brands of colonoscopes. Furthermore, Polyp-Alert can provide as high as ten feedbacks per second for a smooth display of feedback. The performance of our system is by far the most promising to potentially assist the endoscopist find more polyps in clinical practice during a routine screening colonoscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.