The immune system plays a crucial role in cancer development either by fostering tumor growth or destroying tumor cells, which has open new avenues for cancer immunotherapy. It was only over the last decade that the role of B cells in controlling anti-tumor immune responses in the tumor milieu has begun to be appreciated. B and plasma cells can exert anti-tumor effects through antibody-dependent cell cytotoxicity (ADCC) and activation of the complement cascade, even though their effector functions extend beyond the classical humoral immunity. In tumor tissues, B cells can be found in lymphoid aggregates, known as tertiary lymphoid structures (TLSs), well-organized non-encapsulated structures composed of immune and stromal cells. These structures reflect a process of lymphoid neogenesis occurring in peripheral tissues upon long-lasting exposure to inflammatory signals. The TLS provides an area of intense B cell antigen presentation that can lead to optimal T cell activation and effector functions, as well as the generation of effector B cells, which can be further differentiated in either antibody-secreting plasma cells or memory B cells. Of clinical interest, the crosstalk between B cells and antigen-experienced and exhausted CD8+ T cells within mature TLS was recently associated with improved response to immune checkpoint blockade (ICB) in melanoma, sarcoma and lung cancer. Otherwise, B cells sparsely distributed in the tumor microenvironment or organized in immature TLSs were found to exert immune-regulatory functions, inhibiting anti-tumor immunity through the secretion of anti-inflammatory cytokines. Such phenotype might arise when B cells interact with malignant cells rather than T and dendritic cells. Differences in the spatial distribution likely underlie discrepancies between the role of B cells inferred from human samples or mouse models. Many fast-growing orthotopic tumors develop a malignant cell-rich bulk with reduced stroma and are devoid of TLSs, which highlights the importance of carefully selecting pre-clinical models. In summary, strategies that promote TLS formation in close proximity to tumor cells are likely to favor immunotherapy responses. Here, the cellular and molecular programs coordinating B cell development, activation and organization within TLSs will be reviewed, focusing on their translational relevance to cancer immunotherapy.
Introduction: Genital Chlamydia trachomatis infection is one of the most prevalent sexually transmitted diseases in women, and undetected cases of the disease are highly associated with long-term complications. Despite the high prevalence of infections in Brazil, very little is known about the distribution of C. trachomatis genovars. In this study, we determined the prevalence and genotypes of C. trachomatis in women treated at a public hospital in the Brazilian city of Belém, the capital of the state of Pará. Methodology: A total of 154 women were tested for chlamydial infection by PCR using specific primers for the C. trachomatis cryptic plasmid. Genotyping of positive samples was performed by sequencing the ompA gene and conducting further phylogenetic analysis. Results: Out of the 154 samples, 17 were found to be positive using C. trachomatis cryptic plasmid PCR. The overall prevalence of C. trachomatis infection was 11%, with the highest prevalence observed in women between 16 and 20 years of age. Five genotypes were found to be associated with endocervical infection. Genotype F was most frequently found (37.5%), followed by genotypes J (25%), E (25%), I (6.25%), and D (6.25%). Conclusions: This study emphasizes the relevance of C. trachomatis infection in the young female population of the Brazilian Amazon region. It also demonstrates the diversity of genotypes involved in genital infection in this population.
ObjectiveTo better understand the immune microenvironment of pancreatic ductal adenocarcinomas (PDACs), here we explored the relevance of T and B cell compartmentalisation into tertiary lymphoid structures (TLSs) for the generation of local antitumour immunity.DesignWe characterised the functional states and spatial organisation of PDAC-infiltrating T and B cells using single-cell RNA sequencing (scRNA-seq), flow cytometry, multicolour immunofluorescence, gene expression profiling of microdissected TLSs, as well as in vitro assays. In addition, we performed a pan-cancer analysis of tumour-infiltrating T cells using scRNA-seq and sc T cell receptor sequencing datasets from eight cancer types. To evaluate the clinical relevance of our findings, we used PDAC bulk RNA-seq data from The Cancer Genome Atlas and the PRINCE chemoimmunotherapy trial.ResultsWe found that a subset of PDACs harbours fully developed TLSs where B cells proliferate and differentiate into plasma cells. These mature TLSs also support T cell activity and are enriched with tumour-reactive T cells. Importantly, we showed that chronically activated, tumour-reactive T cells exposed to fibroblast-derived TGF-β may act as TLS organisers by producing the B cell chemoattractant CXCL13. Identification of highly similar subsets of clonally expandedCXCL13+tumour-infiltrating T cells across multiple cancer types further indicated a conserved link between tumour-antigen recognition and the allocation of B cells within sheltered hubs in the tumour microenvironment. Finally, we showed that the expression of a gene signature reflecting mature TLSs was enriched in pretreatment biopsies from PDAC patients with longer survival after receiving different chemoimmunotherapy regimens.ConclusionWe provided a framework for understanding the biological role of PDAC-associated TLSs and revealed their potential to guide the selection of patients for future immunotherapy trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.