Single-walled carbon nanotubes (SWNT) are finding increasing use in consumer electronics and structural composites. These nanomaterials and their manufacturing byproducts may eventually reach estuarine systems through wastewater discharge. The acute and chronic toxicity of SWNTs were evaluated using full life-cycle bioassays with the estuarine copepod Amphiascus tenuiremis (ASTM method E-2317-04). A synchronous cohort of naupliar larvae was assayed by culturing individual larvae to adulthood in individual 96-well microplate wells amended with SWNTs in seawater. Copepods were exposed to "as prepared" (AP) SWNTs, electrophoretically purified SWNTs, or a fluorescent fraction of nanocarbon synthetic byproducts. Copepods ingesting purified SWNTs showed no significant effects on mortality, development, and reproduction across exposures (p < 0.05). In contrast, exposure to the more complex AP-SWNT mixture significantly increased life-cycle mortality, reduced fertilization rates, and reduced molting success in the highest exposure (10 mg x L(-1)) (p < 0.05). Exposure to small fluorescent nanocarbon byproducts caused significantly increased life-cycle mortality at 10 mg x L(-1) (p < 0.05). The fluorescent nanocarbon fraction also caused significant reduction in life-cycle molting success for all exposures (p < 0.05). These results suggest size-dependent toxicity of SWNT-based nanomaterials, with the smallest synthetic byproduct fractions causing increased mortality and delayed copepod development over the concentration ranges tested.
Single-walled carbon nanotubes (SWNT) have extremely high affinity for hydrophobic organic contaminants, considerably higher than natural or refractory (e.g., soot and detrital) carbon found in sediments. To evaluate the effect of sediment-associated SWNT on contaminant uptake from sediments by infaunal deposit feeders, we have conducted a comparative bioaccumulation study using two infaunal estuarine invertebrates. The deposit-feeding meiobenthic copepod Amphiascus tenuiremis and the deposit/suspension-feeding polychaete Streblospio benedicti were exposed to hydrophobic organic contaminants (HOCs) including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and polybrominated diphenyl ethers for 14 days in the presence of sediment amended with (1) SWNTs, (2) NIST diesel soot, or (3) no carbon amendment. Coaddition of SWNT to sediments significantly reduced bioaccumulation of HOCs in S. benedicti; however, soot addition tended to increase the bioaccumulation of these same compounds in the polychaete worm. Bioaccumulation of HOCs from sediments by copepods (A. tenuiremis) was less dependent on black carbon addition to sediment; neither SWNT nor soot significantly impacted bioaccumulation of PAHs from sediment by this organism. Exposure of both copepods and polychaetes to radiolabeled (14C) SWNT in estuarine sediments revealed that these organisms did not assimilate these materials into their tissues, although S. benedicti did ingest 14C-SWNT, as fecal rods from this organism contained identical 14C activity as that of the sediment to which the worms were exposed.
Nanomechanical properties of single-walled carbon nanotube (SWNT) reinforced epoxy composites with varying weight percentage (0, 1, 3, and 5 wt%) of nanotubes were measured by nanoindentation and nanoscratch techniques. Hardness and elastic modulus were measured using a nanoindenter. Scratch resistance and scratch damage were studied using the AFM tip sliding against the SWNT reinforced sample surfaces. Nanoindentation/nanoscratch deformation and fracture behaviour was studied by in situ imaging of the indentation impressions/scratch tracks. Viscoelastic properties of the nanocomposites were measured using nanoindentation dynamic mechanical analysis tests. The reinforcing mechanisms are discussed with reference to the nanotube dispersion, interfacial bonding, and load transfer in the SWNT reinforced polymer composites.
The reinforcing mechanisms of single-walled carbon nanotube-reinforced epoxy composites were studied by micromechanics models. The modeling results obtained from both Halpin-Tsai and Mori-Tanaka models are in good agreement with the experimental results. It has been found that these two models are also applicable to other single-walled carbon nanotube-reinforced, amorphous-polymer composites, given the existence of efficient load transfer. The reinforcing mechanisms that work in polymer-carbon nanotube composites were studied. The reasons responsible for the low mechanical property enhancement of single-walled carbon nanotube in polymer composites were discussed in conjunction with the effective fiber length concept, interface between nanotube bundles and the matrix, properties of the reinforcements and matrix, bundle effects, bundle curvature, and alignment.
Nanoclay-reinforced agarose nanocomposite films with varying weight concentration ranging from 0 to 80% of nanoclay were prepared, and structurally and mechanically characterized. Structural characterization was carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found that pre-exfoliated clay platelets were re-aggregated into particles (stacked platelets) during the composite preparation process. Each particle consists of approximately 11 clay platelets stacked together. The nanoclay particles were homogeneously dispersed within an agarose matrix. The clay particles were oriented with a slight preference of the stacked platelets being parallel to the composite film's surface within the low loading composite films. Mechanical properties of the nanocomposite films were measured by tensile, three-point bending and nanoindentation tests. Mechanical testing results show that nanoclays provide a significant enhancement to the tensile modulus and strength. For the 60% clay nanocomposite, its elastic modulus increases up to 21.4 GPa, which is five times higher than that of the agarose matrix. Based upon the structural characterization, a theoretical model has been developed to simulate the mechanical behaviour of the nanoclay-reinforced polymer composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.