Controlling light and heat via metamaterials has presented interesting technological applications using transformation optics (TO) and transformation thermodynamics (TT). However, such devices are commonly mono-physics and mono-purpose, because the used metamaterial is designed to deal with one type of physical mechanisms. Here we demonstrate, for the first time, how to connect TO and TT via the liquid crystal 4-Cyano-4’-pentylbiphenyl (5CB) and, to exemplify such link, we present a multiphysics, multi-purpose device that simultaneously controls light and heat using such material. The anisotropic multiphysics properties of 5CB bond TO and TT, expanding the usage of these theories. The device, composed by 5CB confined between two right circular concentric cylinders, concentrates light (as a converging lens) and simultaneously repels heat from the inner cylinder when the molecules are along the direction and it disperses light (as a diverging lens) and concurrently concentrates heat to the inner cylinder, without disturbing the external temperature field, when the molecules are along the direction , contributing for saving materials and designing miniaturized multiphysics systems.
Bending, shifting, and splitting light rays are some of the basic operations in optics. A change of operation generally requires the device associated with a particular operation to be replaced by another one, resulting in delays. Here, we propose a structure that switches among bidirectional bending, shifting, and splitting of a light beam when rotating it. It is an anisotropic dielectric structure that makes light feel an effective asymmetric conical space. Such a system arises spontaneously in nematic liquid crystals, living liquid crystals, and active nematics and, in any case, can be realized with optical metamaterials. We numerically solve the wave equation to demonstrate bending, shifting, and splitting as noted above. When fabricated with liquid crystals, its functionality can vary with temperature.
O sistema de geração fotovoltaica encontra-se em expansão por ser, em especial, uma fonte limpa e renovável paralela aos danos ambientais causados por algumas fontes de geração de energia, como a térmica e a hidroelétrica, grandes componentes da matriz energética brasileira. Partindo deste ponto de vista, o presente artigo visa efetuar uma análise dos níveis de irradiação para avaliar o sistema fotovoltaico instalado na Universidade de Pernambuco e determinar diretrizes de localização e angulação dos módulos solares, bem como acompanhar a produção de energia elétrica, implantada pela Companhia Energética de Pernambuco (Celpe), através do Programa de Eficiência Energética da ANEEL (PROPEE). Foram instalados 54 módulos, totalizando uma potência de 12,5 kW e inaugurado no dia 19 de setembro de 2017. Ao término desta fase, foi realizado um estudo sobre orientação, inclinação e irradiação das placas, com a finalidade de proporcionar melhorias no rendimento do sistema. Com o auxílio da plataforma computacional AURORA VISION e do software PVsyst, foi possível monitorar a produção e o desempenho energético das placas solares. Com os resultados obtidos nesta pesquisa, será possível otimizar o sistema fotovoltaico no que diz respeito a sua performance, proporcionando principalmente a produção de energia elétrica mais eficiente.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.