This work presents a study on the duplex stainless steel UNS S32101 and ferritic AISI 430 when subjected to cathodic hydrogenation, to ascertain their behavior under the action of hydrogen. Throughout the research, with the aid of optical (MO), scanning electronics (SEM) and atomic force (AFM) microscopy, both hydrogen embrittlement and pitting corrosion after hydrogenation and degassing in UNS S32101 duplex stainless steel became evident. Subsequently, the X-ray diffraction performed to verify the phase transformations confirmed the transformation of the austenitic phase into the martensitic phase in the duplex steel and confirmed the formation of Cr23C6 precipitates in the ferritic steel. And so, it corroborated with the SEM images, proving the transformation of σ-phase agent of pitting corrosion in duplex steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.