Invasive aspergillosis occurs in a wide range of clinical scenarios, is protean in its manifestations, and is still associated with an unacceptably high mortality rate. Early diagnosis is critical to a favourable outcome, but is difficult to achieve with current methods. Deep tissue diagnostic specimens are often difficult to obtain from critically ill patients. Newer antifungal agents exhibit differential mould activity, thus increasing the importance of establishing a specific diagnosis of invasive aspergillosis. For these reasons, a range of alternate diagnostic strategies have been investigated. Most investigative efforts have focused on molecular and serological diagnostic techniques. The detection of metabolites produced by Aspergillus spp and a range of aspergillus-specific antibodies represent additional, but relatively underused, diagnostic avenues. The detection of galactomannan has been incorporated into diagnostic criteria for invasive aspergillosis, reflecting an increased understanding of the performance, utility, and limitations of this technique. Measurement of (1,3)-beta-D glucan in blood may be useful as a preliminary screening tool for invasive aspergillosis, despite the fact that this antigen can be detected in a number of other fungi. There have been extensive efforts directed toward the detection of Aspergillus spp DNA, but a lack of technical standardisation and relatively poor understanding of DNA release and kinetics continues to hamper the broad applicability of this technique. This review considers the application, utility, and limitations of the currently available and investigational diagnostic modalities for invasive aspergillosis.
The application of PCR technology to molecular diagnostics holds great promise for the early identification of medically important pathogens. PCR has been shown to be useful for the detection of the presence of fungal DNA in both laboratory and clinical samples. Considerable interest has been focused on the utility of selecting universal primers, those that recognize constant regions among most, if not all, medically important fungi. Once an amplicon, or piece of amplified DNA determined by the unique pair of oligonucleotide primers, has been generated, several different methods may be used to distinguish between genera and between species. The two major approaches have utilized differences in restriction enzyme digestion patterns or hybridization with specific probe. We report the application of single-strand conformational polymorphism (SSCP) as a technique to delineate the differences between fungal species and/or genera. Minor sequence variations in small singlestranded DNA cause subtle changes in conformation, allowing these strands to be separated on polyacrylamide gels by SSCP. We used a 197-bp fragment amplified from the 18S rRNA gene, common to all medically important fungi. After amplification, the fragments were denatured and run on an acrylamide-glycerol gel at room temperature or 4؇C for 4.5 or 4 h, respectively. Under room temperature conditions, the SSCP patterns for Candida albicans, Candida tropicalis, and Candida parapsilosis were identical and all strains within each species demonstrated the same pattern. These patterns differed markedly from those of the genus Aspergillus. The SSCP patterns of major and minor bands at room temperature permitted distinction between strains of Aspergillus fumigatus and Aspergillus flavus. There also was consistency of the SSCP banding pattern among different strains of the same Aspergillus species. The SSCP patterns for other medically important opportunistic fungi, such as Cryptococcus neoformans, Pseudallescheria boydii, and Rhizopus arrhizus, were sufficiently unique to permit distinction from those of C. albicans and A. fumigatus. We conclude that the technique of PCR-SSCP provides a novel method by which to recognize and distinguish medically important opportunistic fungi and which has potential applications to molecular diagnosis, taxonomic classification, molecular epidemiology, and elucidation of mechanisms of antifungal drug resistance.
O. gallopava may infect SOT recipients with a particular tropism for the CNS. Early recognition of O. gallopava pulmonary infection is important, as the prognosis is excellent before dissemination to the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.