A group of arabinouridines (TMSEAU, EAU, IEAU-TA) and 2'-deoxyuridines (TMSEDU, EDU, IEDU) having a variety of substituents at the uracil C-5 position (trimethylsilylethynyl, TMSE; ethynyl, E; or iodoethynyl, IE), and the sugar C-2' position (2'-arabino OH in arabinouridine, AU; or 2'-deoxyribo H in 2'-deoxyuridine, DU) were prepared to acquire antiviral structure-activity relationships. A broad-spectrum viral panel screen showed that these 5-alkynylarabino/deoxy-uridines exhibit moderate anti-HSV-1 activity, with no difference in potency between arabinouridines and 2'-deoxyuridines. The 2'-deoxyuridines TMSEDU, EDU, and IEDU, unlike the arabinouridines, exhibited potent antiviral activity against cytomegalovirus, but they were also highly cytostatic. The abilities of the 5-alkynylarabino/deoxy-uridines to inhibit nontransfected (wild-type or thymidine kinase-deficient, tk-) and viral gene transfected (HSV-1, HSV-2, or VZV thymidine kinase-positive, tk+) FM3A and OST (osteosarcoma) cells were determined. This group of 5-alkynylarabino/deoxy-uridines showed an enhanced ability to inhibit cells transfected with a viral thymidine kinase gene (HSV-1tk+, HSV-2tk+, VZVtk+) relative to wild-type or thymidine kinase-deficient (tk-) cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.