Lys-234 has been postulated to participate in beta-lactamase catalysis by acting as an electrostatic anchor for the C3 carboxylate of penicillins [Herzberg, O., & Moult, J. (1987) Science 236, 694-701]. To test this hypothesis, site-directed mutagenesis was used to convert the Lys-234 in Bacillus licheniformis beta-lactamase into Glu-234 or Ala-234. The wild-type, Glu-234, and Ala-234 beta-lactamases have been expressed in Bacillus subtilis and purified to homogeneity. The wild-type, K234E, and K234A enzymes have virtually identical circular dichroism and fluorescence spectra, similar thermal stabilities at neutral pH, and the same susceptibilities to proteolysis, indicating the lack of significant structural perturbation caused by the mutation. At acidic and basic pH the mutant enzymes have the same native circular dichroism as the wild-type enzyme but the thermal stability is significantly different. The mutations cause perturbations of the pK values of the ionizing groups responsible for the pH dependence of the catalytic reaction in both the free enzyme and the E.S complex. As expected, conversion of Lys-234 to Ala or Glu decreased substrate binding (Km) by 1-2 orders of magnitude for several penicillin and cephalosporin substrates at neutral and higher pH. However, at low pH, Km is essentially the same for the K234E and K234A enzymes as for the wild-type enzyme. Furthermore, decreases of 2-3 orders of magnitude in kcat were also observed, indicating substantial effects on the transition-state binding, as well as on ground-state binding. Surprisingly, changing the C3 carboxylate of phenoxymethylpenicillin to a hydroxymethyl group led to little difference in kinetic properties with the K234E or K234A enzyme. The results of this investigation indicate the Lys-234 is an important active-site residue involved in both ground-state and transition-state binding.
Site-specific mutation of Glu-166 to Ala in beta-lactamase causes a millionfold reduction in catalytic activity toward both penicillin and cephalosporin substrates and results in the stoichiometric accumulation of a normally transient acyl-enzyme intermediate. Kinetic analysis indicated that substitution of Glu-166 by Ala leads to negligible effect on the acylation half of the reaction but effectively eliminates the deacylation reaction. Such differential effects on the rates of formation and breakdown of an enzyme-substrate intermediate have not been previously reported. Thus, unlike the situation for most transfer enzymes, e.g., the serine proteases, acylation and deacylation in beta-lactamase catalysis are not "mirror" images and must involve different mechanisms. The results suggest an explanation for the different catalytic activities between the beta-lactamases and the penicillin-binding proteins involved in bacterial cell-wall synthesis.
Glutamate-166 of the Bacillus licheniformis beta-lactamase was specifically mutated to aspartate and cysteine in order to probe the function of this residue in catalysis. In both cases, a large decrease in activity (kcat/Km was 3.5 x 10(-5) smaller for E166C and 1 x 10(-3) smaller for E166D than for the wild-type) was observed, although the kinetics for the two mutants were very different. The pH-rate profiles for E166D and E166C reflected the ionization characteristics of the new residue at site 166. This result indicates that the ionization of Glu-166 is responsible for the acidic limb of the kcat/Km-pH profiles, and suggests that the function of Glu-166 is that of a general base catalyst. The kinetics of the E166C mutant were investigated in detail. An initial burst was observed, whose amplitude was stoichiometric with the enzyme concentration, suggesting rate-limiting deacylation of the acyl-enzyme intermediate. However, further study revealed that in the presence of 0.5 M sodium sulfate, which stabilizes the native conformational state, the magnitude of the burst corresponded to 2 equiv of enzyme. This observation, in conjunction with the limited effect of the mutation on Km, indicated that the mutation resulted in a change in the kinetic mechanism from the linear, acyl-enzyme pathway to one with a branch leading to an inactive form of the acyl-enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.