Clinical studies have previously shown that 10% to 33% of professional pitchers do not return to their preinjury level; however, the current study showed that those pitchers who successfully return to professional baseball after UCLr pitch with biomechanics similar to that of noninjured professionals.
Controversy continues whether curveballs are stressful for young baseball pitchers. Furthermore, it is unproven whether professional baseball pitchers have fewer kinematic differences between fastballs and off-speed pitches than lower level pitchers. Kinematic and kinetic data were measured for 111 healthy baseball pitchers (26 youth, 21 high school, 20 collegiate, 26 minor league, and 18 major league level) throwing fastballs, curveballs, and change-ups in an indoor biomechanics laboratory with a high-speed, automated digitising system. Differences between pitch types and between competition levels were analysed with repeated measures ANOVA. Shoulder and elbow kinetics were greater in fastballs than in change-ups, while curveball kinetics were not different from the other two types of pitches. Kinematic angles at the instant of ball release varied between pitch types, while kinematic angles at the instant of lead foot contact varied between competition levels. There were no significant interactions between pitch type and competition level, meaning that kinetic and kinematic differences between pitch types did not vary by competition level. Like previous investigations, this study did not support the theory that curveballs are relatively more stressful for young pitchers. Although pitchers desire consistent kinematics, there were differences between pitch types, independent of competition level.
Background:Weighted-ball throwing programs are commonly used in training baseball pitchers to increase ball velocity. The purpose of this study was to compare kinematics and kinetics among weighted-ball exercises with values from standard pitching (ie, pitching standard 5-oz baseballs from a mound).Hypothesis:Ball and arm velocities would be greater with lighter balls and joint kinetics would be greater with heavier balls.Study Design:Controlled laboratory study.Methods:Twenty-five high school and collegiate baseball pitchers experienced with weighted-ball throwing were tested with an automated motion capture system. Each participant performed 3 trials of 10 different exercises: pitching 4-, 5-, 6-, and 7-oz baseballs from a mound; flat-ground crow hop throws with 4-, 5-, 6-, and 7-oz baseballs; and flat-ground hold exercises with 14- and 32-oz balls. Twenty-six biomechanical parameters were computed for each trial. Data among the 10 exercises were compared with repeated measures analysis of variance and post hoc paired t tests against the standard pitching data.Results:Ball velocity increased as ball mass decreased. There were no differences in arm and trunk velocities between throwing a standard baseball and an underweight baseball (4 oz), while arm and trunk velocities steadily decreased as ball weight increased from 5 to 32 oz. Compared with values pitching from a mound, velocities of the pelvis, shoulder, and ball were increased for flat-ground throws. In general, as ball mass increased arm torques and forces decreased; the exception was elbow flexion torque, which was significantly greater for the flat-ground holds. There were significant differences in body positions when pitching on the mound, flat-ground throws, and holds.Conclusions:While ball velocity was greatest throwing underweight baseballs, results from the study did not support the rest of the hypothesis. Kinematics and kinetics were similar between underweight and standard baseballs, while overweight balls correlated with decreased arm forces, torques, and velocities. Increased ball velocity and joint velocities were produced with crow hop throws, likely because of running forward while throwing.Clinical Relevance:As pitching slightly underweight and overweight baseballs produces variations in kinematics without increased arm kinetics, these exercises seem reasonable for training pitchers. As flat-ground throwing produces increased shoulder internal rotation velocity and elbow varus torque, these exercises may be beneficial but may also be stressful and risky. Flat-ground holds with heavy balls should not be viewed as enhancing pitching biomechanics, but rather as hybrid exercises between throwing and resistance training.
To facilitate normal pitching mechanics, shoulder external rotation and horizontal abduction at 90° should be primary objectives in surgical repair and rehabilitation after SLAP repair. In addition, pitchers should work with their pitching coaches to ensure proper forward trunk tilt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.