We examine the advances in our understanding of extratropical atmosphere-ocean interaction over the past decade and a half, focusing on the atmospheric response to sea surface temperature anomalies. The main goal of the paper is to assess what was learned from general circulation model (GCM) experiments over the recent two decades or so. Observational evidence regarding the nature of the interaction and dynamical theory of atmospheric anomalies forced by surface thermal anomalies are reviewed. We then proceed to examine three types of GCM experiments used to address this problem: models with fixed climatological conditions and idealized, stationary SST anomalies; models with seasonally evolving climatology forced with realistic, time-varying SST anomalies; and models coupled to an interactive ocean. From representative recent studies, we argue that the extratropical atmosphere does respond to changes in underlying SST although the response is small compared to internal (unforced) variability. Two types of interactions govern the response: One is an eddy-mediated process, in which a baroclinic response to thermal forcing induces and combines with changes in the position or strength of the storm tracks. This process can lead to an equivalent barotropic response that feeds back positively on the ocean mixed layer temperature. The other is a linear, thermodynamic interaction in which an equivalent-barotropic low-frequency atmospheric anomaly forces a change in SST and then experiences reduced surface thermal damping due to the SST adjustment. Both processes contribute to an increase in variance and persistence of low-frequency atmospheric anomalies and, in fact, may act together in the natural system.
Inspired by paleoclimate evidence that much past climate change has been symmetric about the equator, the causes of hemispherically symmetric variability in the recent observational record are examined using the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis dataset and numerical models. It was found that the dominant cause of hemispherically symmetric variability is the El Niño-Southern Oscillation. During an El Niño event the Tropics warm at all longitudes and the subtropical jets in both hemispheres strengthen on their equatorward flanks. Poleward of the tropical warming there are latitude belts of marked cooling, extending from the surface to the tropopause in both hemispheres, at all longitudes and in all seasons. The midlatitude cooling is caused by changes in the eddy-driven mean meridional circulation. Changes in the transient eddy momentum fluxes during an El Niño event force upper-tropospheric ascent in midlatitudes through a balance between the eddy fluxes and the Coriolis torque. The eddy-driven ascent causes anomalous adiabatic cooling, which is primarily balanced by anomalous diabatic heating. Using a quasigeostrophic spherical model, forced by an imposed surface eddy disturbance of chosen wavenumber and frequency, it is shown that the anomalous eddy momentum fluxes are caused by the impact that the changes in the tropically forced subtropical jets have on the propagation in the latitude-height plane of transient eddies. Changes in zonal winds, and associated changes in the meridional gradient of potential vorticity, create an anomalous region of low meridional wavenumber in the midlatitudes that refracts waves away both poleward and equatorward. Tropical forcing of variability in the eddy-driven mean meridional circulation is another way, in addition to Rossby wave teleconnections, whereby the Tropics can influence extratropical climate. Unlike teleconnections this mechanism causes climate variability that has strong zonally and hemispherically symmetric components and operates throughout the seasonal cycle. * Lamont-Doherty Earth Observatory Contribution Number 6463.
SUMMARYThe patterns of precipitation anomalies forced by the El Niño-Southern Oscillation during northern hemisphere winter and spring are remarkably hemispherically symmetric and, in the midlatitudes, have a prominent zonally symmetric component. Observations of global precipitation variability and the moisture budget within atmospheric reanalyses are examined to argue that the zonally symmetric component is caused by interactions between transient eddies and tropically-forced changes in the subtropical jets. During El Niño events the jets strengthen in each hemisphere and shift equatorward. Changes in the subtropical jet influence the transient-eddy momentum fluxes and the eddy-driven mean meridional circulation. During El Niño events, eddy-driven ascent in the midlatitudes of each hemisphere is accompanied by low-level convergence and brings increased precipitation. These changes in the transient-eddy and stationary-eddy moisture fluxes almost exactly cancel each other and, in sum, do not contribute to the zonal-mean precipitation anomalies. Propagation of anomalous stationary waves disrupts the zonal symmetry. Flow around the deeper Aleutian Low and the eastward extension of the Pacific jet stream supply the moisture for increased precipitation over the eastern North Pacific and the western seaboard of the United States, while transient-eddy moisture convergence supplies the moisture for increased precipitation over the southern United States. In each case, increased precipitation is fundamentally caused by anomalous ascent forced by anomalous heat and vorticity fluxes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.