This paper introduces a novelty method of using a Linear Prediction Coefficient (LPC) filter, a digital signal processing (DSP) tool to get accurate signal measurement in noisy mobile environment. By measuring the received power of a mobile radio, it also measures the coverage of an area served by several base stations. For results' validation, the mobile received power at user end of two Code Division Multiple Acccess-2000 (CDMA2000) cellular networks operating at different frequency (450 MHz and 800 MHz) in the same environment, Lome in Togo, was considered. Our analysis has consistently shown that within the problem areas in the coverage, the filter response does not match with the measured data. These mismatching areas may likely result from poor soft-handoff process or some dead zones. The study has proven the significant help of this novelty method in problem areas identification. Consequently, such a filter can be embedded to current firmware for Radio Frequency coverage optimization, and for an effective spectrum efficiency.
The most important stage in the design of a Wavelength Division Multiplexing (WDM) fiber optic system is about the choice of the correct optical transmitter, and receiver combination. This depends on the signal to be transmitted over the channel. By adopting the WDM two (2) signals at two (2) different wavelengths of 1310nm and 1550nm, can conveniently be carried on the same fiber. The WDM fiber link can carry 32,256 channels and the throughput too is high (>=2.5Gbps). Many television channels can be accommodated. The amplification along the fiber backhaul remains a bottleneck due to the non-linearity effects that could be additive. In order to minimize the non-linearity effect of the amplifiers, nonregenerative solutions are nowadays used. This paper develops a power loss budget for an optical sparse WDM long haul without inserting any regenerator along the transmission line. The study gives details of establishing a 200 km fiber optic link, operating at 2.5Gbps and supporting a digital signal of Synchronous Transport Signal-48/ Synchronous Transport Module 16 (STS-48/STM-16), where the link is assumed to carry 8 (WDM). In the dimensioning, the optical interfaces were chosen in agreement with the ITU-TG 654 applicable values. The system power deficit was not satisfactory in the first attempt, and so the Erbium Doped-Fiber Amplifiers (EDFAs) were inserted at the light source, and a preamplifier at the optical detector side. The system power deficit was still negative but not much. The transmitting system should have a positive value of the system power deficit so that the link budget can be suggested for the required transmission. Finally the change of the detector sensitivity gave the best estimation in the design process for the required link budget.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.