Background-Ablation of complex arrhythmias would be greatly facilitated by more precise control of ablation catheters.A feasibility study was performed in animals to evaluate a novel magnetic guidance system (MGS) that generates a magnetic field to control the movement and position of a magnetic ablation catheter. Methods and Results-The MGS is composed of a digital biplanar fluoroscope within an array of superconducting electromagnets that surround the torso of the experimental animal and a computer control system that generates a composite magnetic field for directional catheter deflection. Magnetic catheter navigation was performed in dogs and pigs (20 to 30 kg). A 7F magnetic ablation catheter was used for intracardiac navigation and radiofrequency ablation. The performance of a standard 7F deflectable catheter was not affected by the MGS. The magnetic catheter was navigated successfully to 51 predefined targets throughout the heart in 6 animals. In 5 animals, the magnetic catheter, guided by a 3D computed tomogram, was successfully navigated to all pulmonary veins. Navigation accuracy was estimated as Ͻ1 mm displacement from the target. The magnetic catheter was used to ablate the atrioventricular node in 4 animals and to perform linear ablations across the endocardial surface underlying an epicardial multielectrode recording plaque in 4 animals. Conclusions-These results demonstrate that the MGS can navigate and stabilize an ablation catheter at endocardial targets. Linear or focal radiofrequency ablation with the magnetic catheter is not compromised by the magnetic field.
Cardiac electrophysiology procedures present the physician with a wealth of 3D information, typically presented on fixed 2D monitors. New developments in wearable mixed reality displays offer the potential to simplify and enhance 3D visualization while providing hands-free, dynamic control of devices within the procedure room. Objective: This work aims to evaluate the performance and quality of a mixed reality system designed for intraprocedural use in cardiac electrophysiology. Method: The Enhanced Electrophysiology Visualization and Interaction System (ĒLVIS) mixed reality system performance criteria, including image quality, hardware performance, and usability were evaluated using existing display validation procedures adapted to the electrophysiology specific use case. Additional performance and user validation were performed through a 10 patient, in-human observational study, the Engineering ĒLVIS (E2) Study. Results: The ĒLVIS system achieved acceptable frame rate, latency, and battery runtime with acceptable dynamic range and depth distortion as well as minimal geometric distortion. Bench testing results corresponded with physician feedback in the observational study, and potential improvements in geometric understanding were noted. Conclusion: The ĒLVIS system, based on current commercially available mixed reality hardware, is capable of meeting the hardware performance, image quality, and usability requirements of the electroanatomic mapping display for intraprocedural, real-time use in electrophysiology procedures. Verifying off the shelf mixed reality hardware for specific clinical use can accelerate the adoption of this transformative technology and provide novel visualization, understanding, and control of clinically relevant data in real-time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.