A common stream processing application is alerting, where the data stream management system (DSMS) continuously evaluates a threshold function over incoming streams. If the threshold is crossed, the DSMS raises an alarm. The threshold function is often calculated over two or more streams, such as combining temperature and humidity readings to determine if moisture will form on a machine and therefore cause it to malfunction. This requires taking a temporal join across the input streams. We show that for the broad class of functions called
quasiconvex
functions, the DSMS needs to retain very few tuples per-data-stream for any given time interval and still never miss an alarm. This surprising result yields a large memory savings during normal operation. That savings is also important if one stream fails, since the DSMS would otherwise have to cache all tuples in other streams until the failed stream recovers. We prove our algorithm is optimal and provide experimental evidence that validates its substantial memory savings.
We design, implement, and evaluate DeepEverest, a system for the efficient execution of
interpretation by example
queries over the activation values of a deep neural network. DeepEverest consists of an efficient indexing technique and a query execution algorithm with various optimizations. We prove that the proposed query execution algorithm is instance optimal. Experiments with our prototype show that DeepEverest, using less than 20% of the storage of full materialization, significantly accelerates individual queries by up to 63X and consistently outperforms other methods on multi-query workloads that simulate DNN interpretation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.