Insulin is the hormone responsible for maintaining glucose homeostasis in the body, in addition to participating in lipid metabolism, protein synthesis, and the inhibition of gluconeogenesis. These functions are well characterized in the classic organ target cells that are responsible for general energy regulation: the liver, skeletal muscle, and adipose tissue. However, these actions are not restricted to these tissues because insulin has been shown to affect most cells in the body. This review describes the role of insulin in leukocyte signaling pathways, metabolism and functions, and how insulin resistance could affect this signaling and deteriorate leukocyte metabolism and function, in addition to showing evidence that suggests leukocytes may substantially contribute to the development of systemic insulin resistance.
Background Chronic hyperinsulinemia is a hallmark of insulin resistance that affects a diversity of cells, including leukocytes modifying the expression of some genes involved in insulin signaling. Purpose The aim of this study was to evaluate how hyperinsulinemia affects the expression of genes involved in the proximal insulin signaling pathway in leukocytes from 45 young individuals grouped: normal weight with not insulin resistance (NIR), with insulin resistance (IR) and with obesity (OB-IR). Methods qPCR was performed to analyze the expression of insulin receptor (INSR), insulin receptor substrate 1 and 2 (IRS-1 and IRS-2), neutrophil elastase (NE), alpha 1 antitrypsin (A1AT), glucose transporters 1, 3 and 4 (GLUT-1, GLUT-3 and GLUT-4) by the 2 −ΔCt method, and the correlation between the genes was determined by Spearman’s test. Results The mRNA expression analysis of all genes between NIR and IR individuals revealed no differences. However, when comparing NIR and IR individuals with OB-IR, an increase in NE and A1AT expression and a clear trend towards a decrease in IRS-2 expression was observed, whereas the comparison of IR and OB-IR showed a decrease in GLUT-3 expression. Overall, the correlation analysis showed that in the IR group there was a positive correlation only between NE with IRS-1 (r = 0.72, p = 0.003), while in the OB-IR group, there was a positive correlation between the NE and A1AT with INSR (r = 0.62, p = 0.01 and r = 0.74, p = 0.002, respectively) and with IRS-2 (r = 0.74, p = 0.002 and r = 0.76, p = 0.001, respectively). Conclusion These results suggest that hyperinsulinemia and obesity are associated with changes in the expression of genes in leukocytes involved in the insulin pathway that are related to NE and A1AT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.