Abstract--The sequence of mineral reactions involving zeolites and other authigenic phases in tuffaceous sedimentary rocks can be explained by growth-and dissolution-reaction kinetics. Kinetic factors may determine the specific authigenic phases which form and the temporal and spatial constraints on the solution composition during irreversible dissolution and growth reactions in glass-bearing rocks. The glass phase generates a high level of supersaturation with respect to a variety of aluminosilicates in the pore fluid. The sequence of assemblages formed during a series of metastable reactions resembles an Ostwald step sequence. Metastable reactions occur because formation of less stable phases such as gels, clays, and disordered zeolites may lower the total free energy of the glass-bearing system faster than the growth of the stable assemblage including ordered feldspars, quartz, and micas. Eventually, after a series of steps, the most stable silicate assemblage for the bulk composition, temperature, and pressure may form. However, the formation of intermediate metastable phases can delay the attainment of equilibrium by as much as tens of millions of years.
Human consciousness, at least under some conditions, can strongly influence well-designed target experiments in physical reality and the primary data are reproducible in other laboratories provided the specific protocol is followed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.