The concept of microwave-driven smart material actuators was envisioned and developed as the best option to alleviate the complexity and weight associated with a hard-wire-networked power and control system for smart actuator arrays. The patch rectenna array was initially designed for high current output, but has undergone further development for high voltage output devices used in shape control applications. Test results show that more than 200 V of output were obtained from a 6 × 6 array at a far-field exposure (1.8 m away) with an X-band input power of 18 W. The 6 × 6 array patch rectenna was designed to theoretically generate voltages up to 540 V, but practically it has generated voltages in the range between 200 and 300 V. Testing was also performed with a thin layer composite unimorph ferroelectric driver and sensor and electro-active paper as smart actuators attached to the 6 × 6 array. Flexible dipole rectenna arrays built on thin-film-based flexible membranes are most applicable for NASA's various missions, such as microwave-driven shape controls for aircraft morphing and large, ultra-lightweight space structures. An array of dipole rectennas was designed for high voltage output by densely populating Schottky barrier diodes to drive piezoelectric or electrostrictive actuators. The dipole rectenna array will eventually be integrated with a power allocation and distribution logic circuit and microbatteries for storage of excessive power. The roadmap for the development of wireless power drivers based on the rectenna array for shape control requires the development of new membrane materials with proper dielectric constants that are suitable for dipole rectenna arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.