The practice of sprouting is widely used to improve the nutritional value of grain seeds. Several nutritive factors such as vitamin concentrations and bioavailability of trace elements and minerals increase during germination. The objective of this work was to study the enrichment of various essential trace elements during germination of wheat (Triticum aestivum), buckwheat (Fagopyrum esculentum), and quinoa (Chenopodium quinoa) seeds in order to improve their nutritional role as a source of bioavailable trace elements. Seeds were sprouted either in distilled- or tap-water and in five different electrolyte solutions to investigate the concentration-dependent uptake. The time-dependence was investigated by analyzing aliquots of the sprouts after certain germination periods. Samples were analyzed after freeze drying for their Li, V, Cr, Fe, Mn, Co, Cu, Zn, Sr, Mo, As and Se concentrations with inductively-coupled plasma mass-spectrometry (ICP-MS). As a control for possible changes in the biochemical metabolism of the sprouts, the biosynthesis of vitamin C was also determined by using reversed-phase ion-pair HPLC. It was shown that quinoa was the most resistant to the applied electrolyte solutions and had the highest uptake rates for almost all elements, followed by buckwheat and wheat. Greatest increases were observed for Co, Sr, and Li. No significant changes in vitamin C biosynthesis were observed between sprouts grown in different electrolyte solutions. The time-dependent uptake for most elements was characterized by a significant absorption during soaking of the seeds, followed by a lag phase during the first day of germination and an increased uptake during the second and third day. Se and As showed distinctly different uptake behaviors.
Arsenic species in arsenic-accumulating mushrooms (Sarcosphaera coronaria, Laccaria amethystina, Sarcodon imbricatum, Entoloma lividum, Agaricus haemorrhoidarius, Agaricus placomyces, Lycoperdon perlaturn) were determined. HPLC/ICP MS and ion-exchange chromatography-instrumental neutron activation analysis (NAA) combinations were used. The remarkable accumulator Sarcosphaera coronaria (up to 2000 mg As kg-' dry wt) contained only methylarsonic acid, Entoloma lividum only arsenite and arsenate. In Laccaria amethystina dimethylarsinic acid was the major arsenic compound. Sarcodon imbricatum and the two Agaricus sp. were found to contain arsenobetaine as the major arsenic species, a form which had previously been found only in marine biota. Its identification was confirmed by electron impact MS.
We have previously shown that neopterin, 6-o-erythro-trihydroxypropyl-pteridine, synthesized by human monocytes/macrophages upon stimulatlon by interferon-y, enhances toxicity of reactive oxygen at neutral or slightly alkaline pH (7.5), but not at acidic pH (below 6.5). In the present study, we explored in more detail the necessary requirements for neopterin to modulate the effects of hydrogen peroxide in a luminol-dependent chemiluminescence assay. We demonstrate that neopterin enhances hydrogen peroxide effects only in the presence of iron chelator complexes like iron-(III)-or iron-(II)-EDTA or iron-(III)-DTPA. Thus, iron chelator complexes together with neopterin may play an important role in macrophagemediated effector mechanisms.
Background Arsenic has immunomodulatory properties and may have the potential to alter susceptibility to infection in humans. Objectives We aimed to assess the relation of arsenic exposure during pregnancy with immune function and hepatitis E virus (HEV) infection, defined as seroconversion during pregnancy and postpartum. Methods We assessed IgG seroconversion to HEV between 1st and 3rd trimester (TM) and 3 months postpartum (PP) among 1100 pregnancies in a multiple micronutrient supplementation trial in rural Bangladesh. Forty women seroconverted to HEV and were matched with 40 non-seroconverting women (controls) by age, parity and intervention. We assessed urinary inorganic arsenic plus methylated species (∑As) (µg/L) at 1st and 3rd TM and plasma cytokines (pg/mL) at 1st and 3rd TM and 3 months PP. Results HEV seroconverters’ urinary ∑As was elevated throughout pregnancy. Non-seroconverters’ urinary ∑As was similar to HEV seroconverters at 1st TM but declined at 3rd TM. The adjusted odds ratio (95% confidence interval) of HEV seroconversion was 2.17 (1.07, 4.39) per interquartile range (IQR) increase in average-pregnancy urinary ∑As. Increased urinary ∑As was associated with increased concentrations of IL-2 during the 1st and 3rd TM and 3 months PP among HEV seroconverters but not non-seroconverters. Conclusions The relation of urinary arsenic during pregnancy with incident HEV seroconversion and with IL-2 levels among HEV-seroconverting pregnant women suggests arsenic exposure during pregnancy may enhance susceptibility to HEV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.