I n den letzten Johren ist die I d e r p o l d o n von Dotenmerigen verstarkt unlerBeachtung con Nebenbedingungcn betrcichtet worden. Hierzu gehort z. B. die konvexe Interpolation, welche durch die Nichtnega.ticitut der x e i t e n Ableitung charakterisiert ist. I n der vorliegenden Arbeit wird nun die Interpolation unter zweiseitigen Einschrankungen f i i r die Ableitungen untersucht. Auf diese Weise kann z. B. erfaJ0t werden, da$ die Interpolierende auf grwi,wn Teilintervalltn konrex und auj anderen konkav sein SOU. Zur Interpolation werden sowohl quadratische als auch kubische Splines ccvwpndet. I n Vernllgemeinerung friiherer Ergebnisse werden vor allem hinreichende und notwendige Existenzaussagen hergeleitet wwie Moglichkeiten zur effektiven numerischen Ermittlung van Spline-Interpolierenden aufgezeigt, deren Kriirnmung untcr den jeliigen Nebenbedingungen minimal ist. I n the present pa,per the interpolation of data sets is considered under two-sided constraints on th,e dtriiwtiws. l'hus, e.g., the interpolants m a y be convex on some pieces of the domain and concave on others. For solving these interpolation problenzv quadratic and cubic splines a.re used. I n extending earlier results neces.snry and sufficient existcncc conditims are derived as well as numerical procedures for determining interpolants with minimal curvature. B DaHHOn pa6OTe HCCJIefiyCTCH XiAaIIa HIITepnOJlH~HH MII0)fEeCTBa RalIHhlX C IlaJIMYkIeM UBYCTOPOHHHX orpaHmeHHi3 OTHocmemHo npOU360fiHblX. Cmna BXOAHT, Hanptmep , TOT cnyriaii, KorAa mrrepnonnpyio-WaH @YHKUHR fimfieTcH BbinyKnoZi Ha OAHHX, a BorHyToii Ha ApyrHx ysacmax OCH. 3 a x a~a peuaeTcH c miTepnompymWero cnnaiiaa c MmmManbriolYl KPHBH~HOB. IIOMOWblO KBanpaTHYElblX II E E Y~H Y~C K H X CnJlai8HOB. PaCIuIIpHH 6once palIHHe Pe3YJILTaTb1, BbIBOnRTCH HeO6XOAHMble 1% AOCTaTOWlbIe YCnOBHH CYIlieCTBOBaHHR, a TaHXe 113JlaraeTCH YlICJIeHHbIfi MeTOH HaXOWHeHHH 2.1. I n the extended convex interpolwtion with quadratic splines an interpolant s is to be constructed satisfying ZAMM * Z. angew. Math. Mech. 60 (1989) 10 ___-.__.. __. . . ~ ~~ ~ ~__II__-354 i.e.-1 he + (ai -6i-1) t 5 ---(tim i -] ) 2 ~i -] + ( E ( -eipl) t for 0 5 t 5 1 , i = l(1) n .These linear inequalities are fulfilled if and only if they are valid for t = 0 and for t = 1, hiSi-l (= ztmi-l 5 h + ,~i -~ , hi& (=ti -mi-l (=
We consider convex interpolation with cubic C 2 splines on grids built by adding two knots in each subinterval of neighbouring data sites. The additional knots have to be variable in order to get a chance to always retain convexity. By means of the staircase algorithm we provide computable intervals for the added knots such that all knots from these intervals allow convexity preserving spline interpolation of C 2 continuity. (1991): 65D07, 41A15 Mathematics Subject Classification
--ZusammenfassungShape Preserving Histopolation Using Rational Quadratic Splines. In this paper the area true approximation of histograms by rational quadratic Cl-splines is considered under constraints like convexity or monotonicity. For the existence of conve:r or monotone histosplines sufficient and necessary conditions are derived, which always can be satisfied by choosing the rationality parameters appropriately. Since the mentioned problems are in general not uniquely solvable histo-splines with minimal mean curvature are constructed. AMS (MOS) Subject Classifications: 65D07, 41A15Key words: Convex or monotone area true splines, sufficient and necessary existence conditions, construction of splines with minimal mean curvature Gestalterhaltende Histopolation unter Verwendung von rationai-quadratischen Splines. Gegenstand der Arbeit ist die ffiichentreue Approximation von Histogrammen durch rational-quadratische C~-Splines unter Zusatzbedingungen wie Konvexit/it oder Monotonie. Fiir derartige Aufgaben werden hinreichende und notwendige Existenzbedingungen in algorithmischer Form angegeben, und es ergibt sich, dab sich diese Bedingungen bei konvexen oder monotonen Histogrammen durch passende Wahl der Rationalit~itsparameterstets erfiillen lassen. Da die genannten Aufgaben, sofern iiberhaupt, im allgemeinen nicht eindeutig 16sbar sind, werden Histosplines mit minimaler Gesamtkrfimmung ermittelt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.