In 1997 this laboratory initiated a research program with the objective of examining the effect that rinsing of produce with tap water would have on pesticide residues. Samples were obtained from local markets and/or grown at our experimental farm. Because approximately 35% of produce from retail sources contains pesticide residues, growing and treating produce at an experimental farm had the advantage that all such samples contain pesticide residues. Pesticides were applied under normal field conditions to a variety of food crops and the vegetation was allowed to undergo natural weathering prior to harvest. The resulting samples contained field-incurred or "field-fortified" residues. This experimental design was employed to mimic as closely as possible real world samples. Crops were treated, harvested, and divided into equal subsamples. One subsample was processed unwashed, whereas the other was rinsed under tap water. The extraction and analysis method used was a multi-residue method developed in our laboratory. Twelve pesticides were included in this study: the fungicides captan, chlorothalonil, iprodione, and vinclozolin; and the insecticides endosulfan, permethrin, methoxychlor, malathion, diazinon, chlorpyrifos, bifenthrin, and DDE (a soil metabolite of DDT). Statistical analysis of the data using the Wilcoxon signed-rank test showed that rinsing removed residues for nine of the twelve pesticides studied. Residues of vinclozolin, bifenthrin, and chlorpyrifos were not reduced. The rinsability of a pesticide is not correlated with its water solubility.
There is an urgent need to develop biodegradable and nontoxic materials from biopolymers and nature-derived antimicrobials to enhance food safety and quality. In this study, electrospinning was used as a one-step, scalable, green synthesis approach to engineer antimicrobial fibers from zein using nontoxic organic solvents and a cocktail of nature-derived antimicrobials which are all FDA-classified Generally Recognized as Safe (GRAS) for food use. Morphological and physicochemical properties of fibers, as well as the dissolution kinetics of antimicrobials were assessed along with their antimicrobial efficacy using state of the art analytical and microbiological methods. A cocktail of nature-derived antimicrobials was developed and included thyme oil, citric acid, and nisin. Its ability to inactivate a broad-spectrum of with food-related pathogens was demonstrated. Morphological characterization of the electrospun antimicrobial fibers revealed bead-free fibers with a small average diameter of 165 nm, whereas physicochemical characterization showed high surface area-to-volume ratio (specific surface area:21.91 m2/g) and presence of antimicrobial analytes in the fibers. The antimicrobials exhibited initial rapid release from the fibers in 2 h into various food simulants. Furthermore, the antimicrobial fibers effectively reduced E. coli and L. innocua populations by ∼5 logs for after 24 h and 1 h of exposure, respectively. More importantly, due to the small diameter and high surface area-to-volume ratio of the fibers, only miniscule quantities of fiber mass and antimicrobials per surface area (2.50 mg/cm2 of fibers) are needed for pathogen inactivation. The scalability of this fiber synthesis process was also demonstrated using a multineedle injector with production yield up to 1 g/h. This study shows the potential of using nature-derived biopolymers and antimicrobials to synthesize fibers for sustainable food packaging materials.
A rapid, sensitive, and accurate method for the screening and determination of polycyclic aromatic hydrocarbons (PAHs) in edible seafood is described. The method uses quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based extraction and HPLC with fluorescence detection (FLD). The method was developed and validated in response to the massive Deepwater Horizon oil spill in the Gulf of Mexico. Rapid and highly sensitive PAH screening methods are critical tools needed for oil spill response; they help to assess when seafood is safe for harvesting and consumption. Sample preparation involves SPE of edible seafood portions with acetonitrile, followed by the addition of salts to induce water partitioning. After centrifugation, a portion of the acetonitrile layer is filtered prior to analysis via HPLC-FLD. The chromatographic method uses a polymeric C18 stationary phase designed for PAH analysis with gradient elution, and it resolves 15 U.S. Environmental Protection Agency priority parent PAHs in fewer than 20 min. The procedure was validated in three laboratories for the parent PAHs using spike recovery experiments at PAH fortification levels ranging from 25 to 10 000 microg/kg in oysters, shrimp, crab, and finfish, with recoveries ranging from 78 to 99%. Additional validation was conducted for a series of alkylated homologs of naphthalene, dibenzothiophene, and phenanthrene, with recoveries ranging from 87 to 128%. Method accuracy was further assessed based on analysis of National Institute of Standards and Technology Standard Reference Material 1974b. The method provides method detection limits in the sub to low ppb (microg/kg) range, and practical LOQs in the low ppb (microg/kg) range for most of the PAH compounds studied.
Fourteen collaborating laboratories assayed maleic hydrazide (MH), 6-hydroxypyridazin-3(2H)-one, in technical and formulated products by reversed-phase liquid chromatography (LC) with sulfanilic acid as an internal standard. The active MH in the samples (6 lots) ranged from 16% (expressed as the potassium salt) to 98% (MH in the technical). A small amount of 1 M KOH was added to the technical MH and analytical standards to create the potassium salt of the analyte which is soluble in water. Test samples and standards were extracted with water containing the internal standard before analysis by LC on a C8 column with an ion-pairing eluting solution and UV detection at 254 nm. The concentration of MH was calculated by comparing the peak area response ratios of the analyte and the internal standard with those in the analytical standard solution. Eleven laboratories weighed each test sample twice with single analysis. Three laboratories weighed each sample once and made duplicate injections on the LC system. The data were analyzed using the 11 laboratories' results. A second data analysis was done including all laboratory results using a Youden pair approach, selecting one of 2 duplicate assay values randomly for each laboratory and sample. In the first data analysis, the repeatability standard deviation ranged from 0.07 to 1.39%; reproducibility standard deviation ranged from 0.22 to 1.39%. In the second data analysis (using all laboratory data), repeatability standard deviation ranged from 0.09 to 0.86%; reproducibility standard deviation ranged from 0.22 to 1.31%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.