In this study the fine structure and synaptic connections of mossy cells in the rat and monkey fascia dentata were analyzed. In order to study commissural connections of identified mossy cells in the rat, hilar neurons were retrogradely labeled by horseradish peroxidase (HRP) or Fast Blue (FB) injections into the contralateral hippocampus. Vibratome sections containing retrogradely HRP-labeled hilar neurons were Golgi-impregnated and gold-toned. Hilar commissural neurons identified by contralateral FB injection were intracellularly labeled with Lucifer Yellow (LY). Lucifer Yellow staining was made electron-dense by photoconversion thereby allowing for an electron microscopic analysis of the retrogradely labeled and intracellularly stained neurons. With these two different approaches, we succeeded in identifying rat mossy cells projecting to the contralateral hippocampus. Mossy cells in the fascia dentata of primates (Papio anubis, Macaca mulatta, Saimiri sciureus) were, like mossy cells of rats, either Golgi-impregnated and gold-toned or intracellularly injected with LY. No major differences were found between mossy cells of rats and monkeys. The mossy cell dendrites originated from the two sides of an ovoid cell body and were mainly oriented parallel to the granule cell layer. In contrast to the rat, dendrites of mossy cells in the primate did not respect the granule cell layer and penetrated frequently into the molecular layer. The occurrence of excrescences on proximal dendrites was a characteristic feature of all mossy cells. These large spines were more complex in the primate than in the rat. In both rats and primates they formed numerous asymmetric synapses with large boutons of mossy fibers. Peripheral dendrites were covered with small, simple spines. Interestingly, these peripheral dendrites lacking excrescences also established asymmetric synapses with mossy fiber boutons as well as asymmetric and symmetric contacts with smaller terminals of unknown origin. These findings indicate that in both rats and primates the thorny excrescences are not the only target of the mossy terminals. While the proximal portions of the mossy cell dendrites appear to be exclusively contacted by the granule cells, a larger number of neuron types may converge on the distal dendrites. The axons of mossy cells, in both rats and primates, although incompletely stained with the present methods, were seen to ramify in the hilar region. Our results demonstrate that, despite minor species differences, the mossy cells of the fascia dentata represent a cell type that is preserved in phylogenetically distant species.
The connections of the olfactory bulbs of Podarcis hispanica were studied by tract-tracing of injected horseradish peroxidase. Restricted injections into the main olfactory bulb (MOB) resulted in bilateral terminallike labeling in the medial part of the anterior olfactory nucleus (AON) and in the rostral septum, lateral cortex, nucleus of the lateral olfactory tract, and ventrolateral amygdaloid nucleus. Bilateral retrograde labeling was found in the rostral lateral cortex and in the medial and dorsolateral AON. Ipsilaterally the dorsal cortex, nucleus of the diagonal band, lateral preoptic area, and dorsolateral amygdala showed labeled cell bodies. Retrogradely labeled cells were also found in the midbrain raphe nucleus. Results from injections into the rostral lateral cortex and lateral olfactory tract indicate that the mitral cells are the origin of the centripetal projections of the MOB. Injections in the accessory olfactory bulb (AOB) produced ipsilateral terminallike labeling of the ventral AON, bed nucleus of the accessory olfactory tract, central and ventromedial amygdaloid nuclei, medial part of the bed nucleus of the stria terminalis, and nucleus sphericus. Retrograde labeling of neurons was observed ipsilaterally in the bed nucleus of the accessory olfactory tract and stria terminalis, in the central amygdaloid nucleus, dorsal cortex, and nucleus of the diagonal band. Bilateral labeling of somata was found in the ventral AON, the nucleus sphericus (hilus), and in the mesencephalic raphe nucleus and locus coeruleus. Injections into the dorsal amygdala showed that the mitral neurons are the cells of origin of the AOB centripetal projections. Reciprocal connections are present between AOB and MOB. To our knowledge, this is the first study to address the afferent connections of the olfactory bulbs in a reptile. On the basis of the available data, a discussion is provided of the similarities and differences between the reptilian and mammalian olfactory systems, as well as of the possible functional role of the main olfactory connections in reptiles.
The brain of the La Plata dolphin, Pontoporia blainvillei, was studied with methods of quantitative morphology. The volumes and the progression indices of the main brain structures were determined and compared with corresponding data of other Cetacea, Insectivora and Primates. In Pontoporia, encephalization and neocorticalization are clearly greater than in primitive ("basal") Insectivora. The indices are in the lower part of the range for simian monkeys. The paleocortex is regressive in accordance with the total reduction of the olfactory bulb and olfactory tract. In contrast to the situation in primates, the septum, schizocortex and archicortex are not progressive in Pontoporia. The striatum and cerebellum are strongly progressive, corresponding to the efficiency and importance of the motor system in the three-dimensional habitat. The diencephalon, mesencephalon and medulla oblongata show considerable progression. Obviously, this is correlated with the extensive development of structures of the acoustic system. The superficial correspondence of the brains of dolphins and primates in relative size and in the degree of gyrencephaly is rather a rough morphological convergence than a sign of functional equivalence. It is coupled to a strongly divergent development of the various functional systems in the two mammalian orders according to their specific evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.